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Abstract

Artificial vision has often been described as one of the key remaining
challenges to be solved before machines can act intelligently. Recent
developments in a branch of machine learning known as deep learning
have catalyzed impressive gains in machine vision—giving a sense that the
problem of vision is getting closer to being solved. The goal of this review is
to provide a comprehensive overview of recent deep learning developments
and to critically assess actual progress toward achieving human-level visual
intelligence. I discuss the implications of the successes and limitations of
modern machine vision algorithms for biological vision and the prospect
for neuroscience to inform the design of future artificial vision systems.
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1. INTRODUCTION

There is not a week that goes by without artificial intelligence (AI) making a news headline. AI
has become increasingly ubiquitous in our everyday lives, challenging our superiority complex
over machines: AI has now beaten the best human players at Atari games (Mnih et al. 2015), Go
(Silver et al. 2016), chess, and Shogi (Silver et al. 2018), and it is also capable of achieving this feat
without any human knowledge (Silver et al. 2017). The engine behind these tantalizing successes
is a branch of machine learning known as deep learning. Because computers can effortlessly sift
through data at scales far beyond human capabilities, deep learning is not only about to transform
modern society, but also about to revolutionize science—crossing major disciplines from particle
physics (Radovic et al. 2018) and organic chemistry (Segler et al. 2018) to biological research
and biomedical applications (Baldi 2018, Wainberg et al. 2018). In the area of computer vision,
we even hear claims that deep artificial neural networks have reached superhuman capabilities
(Cireşan et al. 2012, He et al. 2016, Lee et al. 2017, Phillips et al. 2018) on a wide range of visual
recognition problems (see Figure 1).

From a neuroscience perspective, the very success ofmodern artificial neural networks provides
computational evidence for a toolkit of neural computations that was hypothesized decades ago.
At the same time, critical limitations of modern architectures are becoming increasingly clear.
Thus, the successes and failures of machine vision are already starting to shape our understanding
of the computations underlying vision. A case in point is visual recognition, for which much of the
early successes of deep learning stemmed from a class of feedforward preattentive neural networks
known as convolutional neural networks (CNNs). On the one hand, CNN successes in natural
image categorization (Cireşan et al. 2012, He et al. 2016, Lee et al. 2017, Phillips et al. 2018)
provide computational evidence for the long-held hypothesis that rapid visual categorization is
possible in the absence of cortical feedback, from a single feedforward sweep of activity through
our visual cortex. On the other hand, known CNN limitations in solving basic visual reasoning
tasks (Ellis et al. 2015, Stabinger et al. 2016, Kim et al. 2018) provide potentially novel hypotheses
for the computational role of the many cognitive processes (including attention, memory, and
executive control) that are lacking in these architectures and that are known to play a role in
biological vision.

Section 2 provides a brief historical context and highlights key deep learning developments that
have led to the recent breakthroughs in visual recognition. In Section 3, I highlight how these re-
cent innovations have led to significant gains in the ability of CNN architectures to account for an
array of brain data. In Section 4, I further highlight some of the main differences in the ways that
machines and humans tackle various recognition problems and, in particular, CNNs’ inability to
account for a host of human behavioral data. In Section 5, I review work underscoring some of the
most serious limitations of current architectures, from a symptomatic sensitivity to noise pertur-
bations to a limited ability to learn abstract representations and to generalize beyond training data.
Finally, I conclude this review by providing pointers to novel computational modules,motivated in
some cases by neuroscience considerations, from attentional mechanisms to mnemonic and other
arithmetic operations. While additional research will be needed to validate this extended toolkit
of neural computations, I see this integration between brain and computer science as one of the
most promising directions to move the field of machine vision forward.

2. DEEP LEARNING: RISE OF THE MACHINES

The deep learning revolution is often said to have started in 2012 when a CNN crushed the
competition at the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). That year, a
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Figure 1

Modern visual recognition challenges used to evaluate machine vision algorithms. (a) ImageNet Large Scale Visual Recognition
Challenge (ILSVRC). Images are shown from 20 representative image subordinate categories sampled from the 1,000 represented in
the data set organized into five basic categories in columns (from left to right and from top to bottom): domestic dogs (Saint Bernard,
corgi, poodle, terrier), domestic cats (tiger, Persian, Siamese, Egyptian), musical instruments (piano, guitar, harmonica, French horn),
geological formations (cliff, volcano, valley, seashore), and cars (race car, minivan, convertible, ambulance). Some of the best neural
network architectures (Hu et al. 2019) achieve a top-5 accuracy above 96% (categorization is considered correct if the correct label is
included in a system’s top 5 predictions). Image credit: Derick Macklin Toth (adapted with permission). (b) Face recognition. Modern
neural networks for face recognition already outperform facial forensic experts with an accuracy of approximately 96% (Phillips et al.
2018). Shown clockwise from the top left are representative face pairs used in the study, highlighting how difficult the task is: different-
identity pair 5, same-identity pair 6, same-identity pair 4, and different-identity pair 1. Panel adapted from Phillips et al. (2018) with
permission from the authors. (c) Sample dense prediction tasks solved with the same network, called UberNet (Kokkinos 2017).
UberNet can perform tasks spanning low- to mid- and high-level vision within a single unified neural network architecture (see the
sidebar titled Image Segmentation and Other (Per-Pixel) Dense Image Prediction Tasks, below). Image credit: Iasonas Kokkinos
(adapted with permission). (d) Dense human pose estimation on the DensePose data set. Modern neural networks learn to predict 3D
volumetric information about human bodies from single 2D images. Panel adapted from Güler et al. (2018) with permission from the
authors.
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Pooling: aggregating
layer outputs locally
(over a spatial range,
typically via a mean or
max operation)

ReLu: a unit that uses
the rectified linear
function defined as the
positive part of its
argument: f(x) = x+ =
max(0,x), where x is
the input to the unit

Weight sharing: the
same weight vector is
shared across all
locations to implement
the convolution

Subsampling: also
called downsampling,
aims to reduce the
spatial resolution of a
visual representation
via a pooling
operation; its antonym
is upsampling

Convolutional layers:
implementation of
convolutions
(essentially the inner
product between two
vectors) for building
visual feature
representations

Fully connected
layers: typically used
as the final dense layers
used to associate visual
feature representations
to classification units,
and thus no weight
sharing takes place

network (Krizhevsky et al. 2012), since dubbed AlexNet (after its lead developer, Alex Krizhevsky),
achieved a top-5 accuracy (response considered correct if the correct class label is included in
the top 5 network outputs; chance level: 5/1000) of 83.6%—outperforming the second-best
system by over 10% and cutting down the error rate compared to the previous year by over 60%
(Russakovsky et al. 2015). The network shared many architectural details with earlier so-called
feedforward hierarchical models of the visual cortex (see, e.g., Fukushima 1980, LeCun et al.
1998, Riesenhuber & Poggio 1999).

Some of these earlier models were indeed grounded in the anatomy and physiology of the
ventral stream of the visual cortex, which is known to play a key role in recognition of objects
(Riesenhuber & Poggio 1999, DiCarlo et al. 2012, Serre 2015). The central realization behind
these models is that the gradual buildup in the tuning and invariance properties of neurons along
the ventral stream could be approximated well by a cascade of convolutions (conv) and local pool-
ing (pool) operations. Many of the key building blocks found in modern CNNs were already in-
troduced in early computational neuroscience models, including the rectified linear unit or ReLu,
to prevent negative firing rates and weight sharing (Fukushima 1980), as well as max pooling,
subsampling, and contrast normalization (Riesenhuber & Poggio 1999). Even the distinction be-
tween convolutional layers for building visual feature representations and fully connected layers
for classification was already present in these early models (Fukushima 1980, LeCun et al. 1998,
Riesenhuber & Poggio 1999). One important distinction, however, between feedforward hier-
archical models of the visual cortex (Fukushima 1980, Riesenhuber & Poggio 1999) and their
computer vision relatives (LeCun et al. 1998, Krizhevsky et al. 2012) is the degree to which visual
representations are constrained by task demand.

2.1. Learning Visual Representations

With the exception of the fully connected (classification) layers, which are trained with explicit
supervision (i.e., using ground truth category labels), training of the convolutional layers in feed-
forward hierarchical models of the visual cortex used (Hebbian-like) unsupervised learning mech-
anisms. In a sense, these earlier models learn to represent visual features frequently encountered
in natural scenes irrespective of whether these features are useful for visual recognition. This al-
leviates the need to propagate error signals backward from classification units in higher stages
to lower convolutional stages during learning, as done with the backpropagation algorithm used
in CNNs (see the sidebar titled Computing with Gradients), which has long been considered
implausible for biological neural networks (Crick 1989; but for more biologically plausible ap-
proximations, see Bengio et al. 2015, Miconi et al. 2018, Moldwin & Segev 2018, Scellier &
Bengio 2017,Whittington & Bogacz 2017).Unsupervised Hebbian-like learning also seems more
consistent with neural recordings that had suggested that learning and plasticity in the ven-
tral stream is driven by a subject’s visual experience and is unaffected by reward signals (Li &
Dicarlo 2012, Logothetis et al. 1995). Indeed, until relatively recently, the reliance on unsuper-
vised learning mechanisms was not limited to computational neuroscience models; most of the
work in computer vision before 2012 largely focused on the problem of engineering visual rep-
resentations and/or learning them without any explicit task-driven supervision (for a review, see
Tosic & Frossard 2011). Modern deep neural networks, however, use supervision from bottom to
top layers (called end-to-end) to optimize their learned visual representations for specific tasks.
Because of the large number of free parameters in these networks (i.e., the weights), training in
this way requires very large image databases such as ILSVRC (with over 1 million samples for
1,000 object categories) (Russakovsky et al. 2015).
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COMPUTING WITH GRADIENTS

The notion of a gradient, which is a multivariable generalization of the derivative, is key in nearly every aspect
of deep learning. Unlike in earlier computational neuroscience network models, connection weights in convolu-
tional neural networks are learned via a supervised training method known as backpropagation—a shorthand for
the backward propagation of errors. Backpropagation follows a gradient descent approach to adjust the weights
of a neural network so as to minimize a cost function (also called an error or energy function) for the network.
There are many ways to define a network’s cost function, and classification error is only one such method. Because
backpropagation requires the computation of the gradient of this cost function, which typically (but not necessarily)
means that a desired target value is known, it is considered to be a supervised learning method, although it is used
in some unsupervised networks such as autoencoders. In effect, backpropagation is a generalization of the delta rule
to multilayered feedforward networks, made possible by using the chain rule to iteratively compute the gradient for
each layer. Because of the need to propagate gradient signals backward, backpropagation has long been considered
implausible for biological neural networks (Crick 1989), but plausible alternatives have been described in recent
years (e.g., Bengio et al. 2015, Miconi et al. 2018, Scellier & Bengio 2017,Whittington & Bogacz 2017).

Backpropagation is a special case of a more general technique called automatic differentiation (also called algo-
rithmic differentiation or computational differentiation), which includes multiple numerical methods for evaluating
the gradient of a cost function by exploiting the fact that the computations carried by a neural network can be de-
composed as a sequence of elementary arithmetic operations and elementary functions. By applying the chain rule
repeatedly to these operations, it is possible to compute gradients of arbitrary order automatically and accurately to
working precision. Much of the success and widespread adoption of deep learning by the computer vision commu-
nity stem from the public availability of algorithmic differentiation libraries such as Keras, Tensorflow (Abadi et al.
2016), or pyTorch (Paszke et al. 2017) that allow anyone (without even any knowledge of calculus) to train arbitrary
networks. What used to take months, implementing and training a neural network, can now be done literally in
minutes.

Beyond training networks, many of the methods mentioned in this review (including the feature visualization
and attribution methods described in Section 3) require the computation of the gradient of a cost function that
maps images to parameters (e.g., the gradient of arbitrary unit activations with respect to an image).

Perhaps one of the most surprising discoveries of the past few years is the degree of transfer
exhibited by ILSVRC-optimized visual representations to novel tasks. Indeed, when developing a
vision system for a novel recognition task,most researchers freeze the convolutional layers of their
network (which are not retrained), reusing instead the convolutional layers from an ILSVRC-
optimized network—only retraining the fully connected layers that implement task-specific
classification circuits at the top by learning to associate visual representations derived from the
convolutional layers with category labels. ILSVRC-optimized visual representations appear to be
relatively generic in the sense that they appear to be good all-around visual representations that
are useful for solving a wide variety of visual tasks beyond the specific ones used to train the net-
work (Donahue et al. 2014, Oquab et al. 2014, Zhou et al. 2014). In a sense, the long-held dream
of computational neuroscientists to identify the mechanisms by which the ventral stream would
learn generic and invariant visual representations was realized by considering not unsupervised
learning mechanisms (assumed to be biologically plausible), but rather supervised, task-specific
learning mechanisms (assumed to be rather biologically implausible).

It remains unclear whether such invariant and generic visual representations can be learned
without supervision. A large research effort focuses on unsupervised learning mechanisms
(e.g., autoencoders, variational autoencoders, prediction networks) but so far results have been
somewhat unconvincing—with visual representations trained without explicit supervision vastly
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underperforming those trained with supervision. An alternative strategy has been to focus on the
identification of so-called auxiliary tasks (i.e., tasks that can be used to pretrain a neural network
but that are secondary to the main task for which the network is being trained). Examples of aux-
iliary tasks include asking neural networks to colorize grayscale images, to fill-in image holes, to
solve jigsaw puzzles made from image patches, or to predict movement in videos (for an overview,
see Doersch & Zisserman 2017). Researchers’ hope is to discover auxiliary tasks that can be used
to reduce the number of labeled examples needed to train modern neural networks.

2.2. Rolling in the Deep

In the past six years, the top-5 error on ILSVRC has continued to decrease, down from 16.4% in
2012 to 11.7% in 2013 and 6.7% in 2014, which marks the year in which the field realized that
deeper networks perform better.While the core building blocks of modern neural networks were
identified decades ago, recent gains achieved in computer vision would not have been possible
without several innovations that have been discovered in the past few years and that have allowed
the training of increasingly deep CNNs.

Two popular networks that are often considered to be the first truly deep networks include the
2014 ILSVRC winner, called GoogLeNet, with 22 layers (Szegedy et al. 2015), and the runner-
up, called VGG (named after the Visual Geometry Group at Oxford), with 19 layers (Simonyan
& Zisserman 2015). For comparison, earlier networks included eight layers or fewer (Fukushima
1980,Krizhevsky et al. 2012, LeCun et al. 1998,Riesenhuber & Poggio 1999). Another innovation
of the GoogLeNet architecture includes the development of the inception module that allows for
convolutions with different filter sizes and pooling operations within the same layer—allowing the
network, in a sense, to identify which sizes to use through training. Another key building block
introduced is the 1 × 1 convolution that allows an inception module to be implemented without
blowing up the network dimensionality (by allowing larger N × M convolutional kernels to be
approximated by 1 × 1 kernels, leading to a deeper architecture with much fewer parameters).

Amilestone was achieved in 2015when a deep residual network (ResNet) architecture (He et al.
2016) achieved an error rate of 3.5% with a mind-blowing 152 layers. The network is considered
to be the first to have surpassed the human level of accuracy, estimated to have an error rate of
approximately 5% (Russakovsky et al. 2015) (although the human accuracymeasure was computed
casually and should not be taken too literally). The main innovation in the ResNet included the
design of the residual module: Building on the inception idea, in a residual module, an input
goes through a series of conv-ReLu-conv stages, the result of which is then added to the original
input. The main assumption is that residual modules help the gradient flow by allowing it to
bypass processing layers that would cause it to dissipate and disrupt learning, in effect allowing
the model to learn appropriate processing depth for a task. The latest trend in the design of deep
neural networks involves the inclusion of such residual blocks in networks that are not only deeper
but also wider, as in the ResNetXT (Xie et al. 2017). However, as of 2017, accuracy improvements
on ILSVRC have started to hit a ceiling, and the challenge is considered by many to be saturated.

By now, deep networks have literally taken over the entire field of computer vision. In face
recognition, CNNs have already been shown to perform at the level of professional facial forensic
experts, as well as untrained super-recognizers from the general public (i.e., people who have sig-
nificantly higher than average face recognition ability; see Phillips et al. 2018). CNNs have also
achieved significant successes in the categorization of natural animal and plant species, mimicking
tasks that require human expertise. Currently, the largest such database is called the iNaturalist
plant and animal classification data set (Van Horn et al. 2018), which includes nearly 1 million
photos from 5,089 taxa and 13 superclasses taken in the wild by amateur photographers. The
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accuracy of these CNNs is claimed to be on par with experts and well beyond that of naive ob-
servers, with a current top-5 accuracy of 87.5% (or approximately 5,000 times better than chance).

Pose tracking and action recognition in videos are two additional areas where deep learning
has pushed the state of the art. ResNets have already found an exciting application to body-pose
tracking in animal biomedical research (Mathis et al. 2018). Human action recognition has been
lagging somewhat behind image categorization because of a lack of a comparably large, labeled
data set. There are now claims that action recognition in videos is about to catch up, given the
recent availability of action data sets of magnitude comparable to ILSVRC (Hara et al. 2018).
The recently released Kinetics data set (Kay et al. 2017) contains approximately 650,000 video
clips covering 700 human action classes and at least 600 clips per class.

One of the main ideas behind extensions of CNNs from the processing of images to the pro-
cessing of videos is to inflate spatial filters from 2D (spatial) convolutions to 3D (spatiotempo-
ral) convolutions (Carreira & Zisserman 2017). Another key concept involves the combination
of shape and motion information computed by these 2D and 3D convolutional architectures
(Carreira & Zisserman 2017, Simonyan & Zisserman 2014). As in image categorization, these
core ideas were identified by computational neuroscientists decades ago based on physiological
and anatomical considerations (Adelson& Bergen 1985,Giese & Poggio 2003,Heeger et al. 1996,
Jhuang et al. 2007). However, as in image categorization, progress has reached impressive levels,
with accuracy rates nowwell over 80% (top-5) accuracy on the kinematics data set with 400 diverse
human classes.

Overall, the recent gains in accuracy achieved with CNNs would have been hard to imagine
just a decade ago, and today, it is nearly impossible to find an area of computer vision that is not
dominated by deep learning. What is perhaps even more surprising is how many of these gains
fueled by computer science andmachine learning advances have turned into parallel gains in visual
neuroscience, which I discuss in the next section.

3. DEEP LEARNING: THE GOOD

The history of artificial neural networks is rooted in biology, but two important developments have
led to the recent gains observed in computer vision: the end-to-end learning of visual representa-
tions optimized for large-scale visual recognition tasks and the successful training of increasingly
deep visual architectures. These advances have, in turn, prompted neuroscientists to explore the
ability of these improved vision models to account for the properties of neurons in our visual
cortex (for reviews, see Kriegeskorte 2015, Yamins & DiCarlo 2016).

3.1. Deep Learning in the Visual System

Early computational neuroscience work started with AlexNet (Krizhevsky et al. 2012) and ZFnet
(Zeiler & Fergus 2014), which were shown to improve the fit to neural data in intermediate and
higher areas of the ventral stream of the visual cortex compared to earlier computational models
trained without explicit supervision (Cadieu et al. 2014, Khaligh-Razavi & Kriegeskorte 2014).
More recent work includes deeper networks such as VGG (Simonyan & Zisserman 2015), but
these models did not significantly improve the goodness-of-fit beyond the shallower AlexNet and
ZFnet (Abbasi-Asl et al. 2018, Kalfas et al. 2017). A recent study (Cadena et al. 2019) has shown
that intermediate VGG layers provide a better fit to V1 monkey electrophysiology data compared
to simpler linear-nonlinear models. Work by Hong et al. (2016) has also shown that multiple im-
age properties beyond object categories (e.g., object position, 3D size and pose) remain relatively
well encoded in higher processing stages in both neural and CNN representations. This provides
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further evidence that both visual hierarchies are able to learn visual representations that are invari-
ant to task-irrelevant transformations while maintaining information for categorical-orthogonal
properties.

Further evidence for hierarchical processing in object recognition comes from studies that have
shown that the depth of convolutional layers that provides the best goodness-of-fit with brain data
increases along the ventral visual stream (Cichy et al. 2016, Devereux et al. 2018, Güçlü & van
Gerven 2015, Kalfas et al. 2017, Khaligh-Razavi et al. 2017, Yamins et al. 2014). Similar results
were also reported for scene recognition (Cichy et al. 2017, Greene & Hansen 2018) and action
recognition (Güçlü & van Gerven 2017) with spatiotemporal CNNs trained for action recogni-
tion (Tran et al. 2015). Interestingly, the goodness-of-fit between brain data and fully connected
layers tends to be lower than with convolutional layers (Kalfas et al. 2017), a result consistent with a
behavioral study that has comparedCNNswith human behavioral decisions during a rapid catego-
rization task (Eberhardt et al. 2016). This result also seems consistent with a recent object naming
study (Devereux et al. 2018) that has shown that a network model of semantics, explicitly trained
to learn a mapping from the convolutional layers of a CNN onto object semantic attributes, was
better able to explain functional magnetic resonance imaging (fMRI) activation patterns in higher
visual areas compared to either convolutional or fully connected layers.CNNs have also been used
to synthesize patterns of fMRI activations, which were then used to reproduce classic functional
brain-mapping experiments—from recovering retinotopic maps in early visual areas to replicating
the known faces-versus-places bold contrast in higher areas (Eickenberg et al. 2017).

One of the main challenges associated with the fitting of computational models such as the
CNNs discussed above arises because of the large dimensionality of the space of model parame-
ters and the comparatively small amount of neural data available to estimate those parameters. As
a result, all the above-mentioned studies had to use feature activations from ILSVRC-optimized
networks to fit linear models to neural data, thus reducing the model parameter space to a more
manageable size given the number of samples available from these neuroscience experiments. Re-
cently, however, researchers have started to take into account the anatomy of the visual system to
reduce the dimensionality of the space of model parameters, which has, in turn, allowed them to
train models end-to-end without the need for pretraining.

For instance, it is possible to exploit the fact that neurons with overlapping receptive fields
receive a common pool of inputs to more effectively fit model parameters to multiple V1 neurons
simultaneously, making it possible to learn a common feature space from which one can then
linearly predict the activity of each individual neuron (Antolík et al. 2016). Similarly, researchers
have shown that it is possible to leverage the modular organization of the retina to fit the spiking
activity of a population of retinal ganglion cells—markedly outperforming previous models (Batty
et al. 2016, Klindt et al. 2017, Maheswaranathan et al. 2018, McIntosh et al. 2016).

3.2. In Silico Electrophysiology

Above, I highlight that our progress in deep learning has led to computational models with better
fit to neuroscience data, but the interaction between computer scientists and brain scientists has
not been unidirectional. Interestingly, several of the common methods used to try to characterize
the visual representations learned by deep networks are indeed reminiscent of classic methods
used in neurophysiology studies, from searching for a preferred stimulus (Gross et al. 1972) to
methods for feature simplification (Kobatake & Tanaka 1994) and reverse correlation ( Jones &
Palmer 1987).

Feature visualization methods aim to identify preferred stimuli for individual network units
(Figure 2a–d) (for an overview, see Olah et al. 2017). Some of the simplest methods include the

406 Serre

A
nn

u.
 R

ev
. V

is
. S

ci
. 2

01
9.

5:
39

9-
42

6.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

H
ar

va
rd

 U
ni

ve
rs

ity
 o

n 
12

/1
4/

19
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



VS05CH17_Serre ARjats.cls August 26, 2019 15:40

a

e

b c

d

f

Top activated images

Segmented images using the binarized unit activation map

Figure 2

Representative methods for understanding deep neural network representations and interpreting their decisions. (a) Feature
visualization methods aim to identify the preferred stimulus of units in a neural network. (b) Attribution methods aim to identify the
part of an image responsible for a network activating in a particular way. Shown are pixels that contribute to the network decision for
“Labrador retriever” (red) and “tiger cat” (green). Panels a and b adapted from Olah et al. (2017) under Creative Commons
Attribution CC-BY 4.0. (c) Invariant subspaces. Representative samples showing texture-like and shape-like detectors in VGG [layer
conv3_1 from Cadena et al. (2018)]. Panel adapted with permission from the authors. (d) Network dissection (Zhou et al. 2019). The
method identifies image regions that selectively activate a particular network unit and assess the overlap with the associated semantic
interpretation using manual image annotations. Image credit: Bolei Zhou (adapted with permission). (e) Stimulus generated using a
generative adversarial network (GAN) combined with a genetic algorithm to probe the selectivity of inferotemporal cortex neurons
(Ponce et al. 2019). Image credit: Carlos Ponce (adapted with permission). ( f ) Sample stimuli generated using the feature visualization
method of panel a on a network fitted to V4 neural responses. These responses are in turn shown to activate V4 units maximally. Shown
are one of the features generated to maximally activate neural sites 13, 16 and 17. Image credit: Pouya Bashivan (adapted with
permission).

activationmaximization approach,which aims to identify the top visual stimulus (Erhan et al. 2009)
or the average (over-the-top N) visual stimuli (Zhou et al. 2014) that maximize an individual
unit response as their preferred stimuli. So-called attribution methods (for a review, see Olah
et al. 2018) have also been proposed to help determine salient image features responsible for the
network activating in a particular way, also using variants of backpropagation (Figure 2b). Another
related line of work (Cadena et al. 2018) has focused on visualizing what image transformations
units in a CNN are invariant to (Figure 2c).

More complex optimization-based feature visualization methods, referred to as deep dream-
ing, have also been proposed that use variants of backpropagation (see the sidebar titled Im-
age Synthesis) to synthesize novel images that are optimal to drive specific units of a network
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IMAGE SYNTHESIS

Starting from a noise image, it is possible to use gradient descent methods, including backpropagation, to itera-
tively synthesize a new image that shares the same representation (e.g., the same unit activations in certain layers of
the network) with a reference image up to some tolerance (for one of the first successful approaches prior to deep
learning, see Portilla & Simoncelli 2000). Unlike when training the network, where each iteration of the backprop-
agation algorithm yields an update of the network weights, synthesis and related transfer methods do not update the
weights and update the input image instead because the gradient is computed with respect to the input image and
not the network weights. The art in image synthesis is to discover interesting differentiable image parametrizations
to produce appealing images (for an overview, see Mordvintsev et al. 2018). Another recent method for image syn-
thesis that is gaining in popularity is the generative adversarial network (GAN) (Goodfellow et al. 2014). GANs use
two neural networks: A generator tries to synthesize content (say, an image), and a discriminator tries to discrim-
inate between real images and synthetic ones. This can lead to impressive artificially generated images, including
the synthetic faces and artistic paintings shown in Figure 3. The field has now boomed with methods developed
for the more general class of problems known as image-to-image translation to learn to convert images from one
domain to another (as in converting day scenes into night scenes, summer pictures into winter ones, etc.) (Zhu et al.
2017).

(Olah et al. 2017).The use of neural networks for synthesizing novel images has bloomed in recent
years, with broad applications in computational photography and even art production (Figure 3).
These image synthesis methods have even been used to control cortical populations of neurons.
Bashivan et al. (2019) fitted CNNs to V4 neural responses and used these models to construct
images designed to either broadly activate large populations of neurons or selectively activate one
population while keeping another unchanged. Recent work has also focused on the application of
a new breed of architectures called generative adversarial networks (GANs; see the sidebar titled
Image Synthesis) to find optimal stimuli for neurons (Ponce et al. 2019) or to help reconstruct
visual stimuli from fMRI activity (Güçlütürk et al. 2017; but for reconstruction approaches that
use more standard CNNs, see also Horikawa & Kamitani 2017a,b).

In addition to visualization and attributionmethods, several selectivitymeasures have been pro-
posed to better characterize the visual representations learned by CNNs. The network dissection
method (Zhou et al. 2019) tries to quantify the interpretability of individual units by estimating
the receptive field location of individual units and then considering the purity of their selectiv-
ity for a variety of visual attributes (e.g., color, object category, material properties) using a large
database of manually annotated images (see Figure 2d). The class-conditional mean activity selec-
tivity (Morcos et al. 2018) inspired by category indexes used in monkey neurophysiology studies
(Freedman et al. 2001) measures the contrast between the highest class-conditional mean activity
and the mean activity across all other classes. Overall, one of the most striking findings is that,
following ILSVRC training, a significant number of units become highly selective to object cate-
gories, including people and animals (Agrawal et al. 2014, Zhou et al. 2019). In addition, it has also
been shown that the representations learned by CNNs, including the top-most layers, are able to
maintain a surprising amount of image information, including the viewpoint of a face (Parde et al.
2017) and the position, size, and pose of an object (Hong et al. 2016).

Overall, a growing body of literature suggests that depth and supervision in CNNs,which have
led to major gains in accuracy in machine vision applications, have supported the concomitant
learning, allowing for the development of visual representations that are more consistent with

408 Serre

A
nn

u.
 R

ev
. V

is
. S

ci
. 2

01
9.

5:
39

9-
42

6.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

H
ar

va
rd

 U
ni

ve
rs

ity
 o

n 
12

/1
4/

19
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



VS05CH17_Serre ARjats.cls August 26, 2019 15:40

a

c d

b

Figure 3

Art and image synthesis with deep neural networks. (a) Style transfer with convolutional neural networks (CNNs). The content of an
image (top, first panel) is combined with the style of three distinct paintings (top, second, third, and fourth panels) to synthesize a new
artistic image (bottom row) using a neural network (Gatys et al. 2017). Image credit: Matthias Bethge (adapted with permission). (b) The
Portrait of Edmond Belamy produced by a generative adversarial network (GAN) and sold by Christie’s for $432,500 in October 2018.
Reproduced with permission from the copyright holder. Sotheby’s Contemporary Art Day Auction held in March 2019 also featured a
machine installation that used neural networks to generate an infinite stream of portraits. Mainstream artists including Refik Anadol,
Trevor Paglen, and Jason Salavon have started to incorporate neural networks as a part of their artistic process. (c) Latest improvements
in style transfer by leveraging attentional mechanism to produce transfers that respect the semantic content of the original image (Park
& Lee 2019). Image credit: Dae Y. Park and Kwang H. Lee (adapted with permission). (d) Synthetic images generated by a large
generative adversarial network named BigGAN (Brock et al. 2019). Adapted with permission from the authors.

those found in our visual cortex. Concurrently, novel methods have been developed, inspired in
part by electrophysiology studies, to try to better characterize these learned visual representations.
At the same time, a growing body of literature is suggesting that modern artificial neural networks
leverage visual recognition strategies that differ from those used by their biological cousins, which
I discuss in the next section.
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4. DEEP LEARNING: THE BAD

Surprisingly, the success of CNNs in explaining neural data has not turned into consistent
improvements in explaining human judgments and behavioral decisions. An important human
benchmark for CNNs includes psychophysics data derived from rapid (speeded) categorization
tasks because these tasks do not require attention and engage predominantly feedforward neural
processes akin to those implemented in CNNs (see Section 2.1). Indeed, at a coarse level, CNNs’
sensitivity to image transformations appears to be largely consistent with human rapid categoriza-
tion data (Kheradpisheh et al. 2016a,b). At the same time, decisions derived from CNNs at the in-
dividual image level appear to differ significantly from those made by human observers (Eberhardt
et al. 2016, Rajalingham et al. 2018). A systematic comparison between predictions derived from
individual network layers and those derived from humans revealed that the correlation peaks for
convolutional layers (Eberhardt et al. 2016), suggesting that the decision processes involved in
human behavioral judgments are not well modeled by the final (fully connected) layers of a CNN.

Consistent with this interpretation, a recent object naming study (Devereux et al. 2018) has
shown that a networkmodel of semantics, explicitly trained to learn amapping from visual features
onto object semantic attributes, was better able to explain fMRI activation patterns in higher visual
areas compared to both convolutional and fully connected layers of a CNN. In addition, it has
been shown that neural signals in intermediate areas of the ventral stream of the visual cortex are
predictive of nonhuman primate accuracy and reaction times during rapid visual categorization
(Cauchoix et al. 2016). It is thus possible that human participants rely on visual representations of
lesser complexity than those learned by CNNs. How then is the visual cortex able to improve its
accuracy whenmore time is allowed for visual recognition? One hypothesis is that longer response
times allow recurrent processes to take place, and greater processing depth is achieved through
time rather than static depth, as in CNNs.

Beyond rapid visual categorization, several studies have highlighted qualitative differences be-
tween the visual strategy used by CNNs and that used by human observers. One important fea-
ture of the primate visual system is its sensitivity to shape information starting early in life. Initial
studies have shown that, indeed, ILSVRC-optimized CNNs exhibit a sensitivity to shape features
that is much improved compared to earlier computational models of object recognition and qual-
itatively consistent with neural and behavioral studies (Kubilius et al. 2016, Ritter et al. 2017),
including the preference to categorize objects according to shape rather than color that is found
in young word learners (Landau et al. 1988).

At the same time, studies have also found systematic differences between CNN and human
judgments for the perception of object silhouettes (Kubilius et al. 2016, Pramod & Arun 2016).
One possible explanation for this discrepancy is that, as hypothesized in cognitive psychology
(Biederman 1987), more explicit structural representations may be needed to close the gap. This
assumption was directly validated by Erdogan& Jacobs (2017), who showed that a Bayesian model
of shape inference with an object-centered coordinate system captures human observers’ similar-
ity judgments significantly better than do CNNmodels. In addition, a very recent study has shown
that CNNsmay have access to some shape information in the form of local edge relations, but they
do not seem to have access to global object shapes (Baker et al. 2018). Another study has shown
that CNNs do not seem to perceive illusory contours, suggesting that they deal with partial occlu-
sions using a strategy that likely differs from the amodal completion mechanisms used by human
observers (Kellman et al. 2017). Two studies have also found that modern CNNs underperformed
simpler (older) models of early visual processing (inspired by the physiology of the early visual sys-
tem) for explaining human perceptual sensitivity to image perturbations and to temporal changes
in image sequences (Berardino et al. 2017, Hénaff et al. 2019).
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In a similar vein, Ullman et al. (2016) found that, when presented with small object crops, hu-
man participants depend critically on the inclusion of a key diagnostic image feature to recognize
an object. In contrast, CNNs fail to exhibit the same all-or-nothing dependence on key visual
features during object recognition. A subsequent study by Linsley et al. (2017) tried to compare
more directly the visual representations learned by CNNs and those used by human observers.
Using Clicktionary, a collaborative web-based game that they developed to identify diagnostic vi-
sual features for human object recognition, they were able to directly compare attribution maps
derived from representative CNNs (for an overview of these methods, see Section 3.2) with im-
portancemaps derived from human observers.The analysis revealed that CNNs and humans favor
dissimilar visual features during object categorization. It is likely that these differences arise be-
cause of a lack of explicit mechanisms for perceptual grouping and figure-ground segmentation
in CNNs, which are known to play a key role in the development of our visual system ( Johnson
2001, Ostrovsky et al. 2009). In the absence of figure-ground mechanisms, CNNs are compelled
to associate foreground objects and their context as single perceptual units. Consistent with this
idea, it has been shown that CNNs do not generalize well to atypical scenes, such as when objects
are presented outside of their usual context and in the presence of clutter and occluders (Rosenfeld
et al. 2018b, Saleh et al. 2016, Tang et al. 2018, J. Wang et al. 2018). Follow-up work by Linsley
et al. (2019) demonstrated that it is, however, possible to cue CNNs to attend to image regions that
human observers deem to be important for object recognition. Such co-training leads to neural
architectures that generalize better and that learn visual representations that are more consistent
with those used by humans.

Beyond visual categorization, several early studies have successfully used CNNs to predict hu-
man typicality ratings (Lake et al. 2015) and memorability (Dubey et al. 2015) for natural object
images. More recent work has shown that important features of human judgments are missing
from CNN representations ( Jozwik et al. 2017). However, the difference between the two sys-
tems may be more quantitative rather than qualitative, as it has been shown that a simple linear
transformation of these representations [analog to the concept of dimensional attention in cogni-
tive psychology (Nosofsky 1987)] leads to substantial improvements in the goodness-of-fit of these
models (Peterson et al. 2018). At the same time, a recent study aiming to target higher-level con-
cepts in similarity ratings demonstrated that, despite the authors’ best efforts, none of the tested
CNNs were able to reproduce the image matching produced by human observers (Rosenfeld et al.
2018a). The authors attributed this discrepancy to a variety of factors that are known to affect
human similarity judgments, including abstraction (as in abstracting a doorway for a mountain
passageway) and context dependence (as in flexibly ignoring color cues or pose to match shape).

Overall, while initial studies highlighted the substantial similarities between visual representa-
tions learned by artificial and biological neural networks, a growing body of literature is starting
to demonstrate systematic differences between machine and human visual recognition judgments.

5. DEEP LEARNING: THE UGLY

While cognitive psychologists have found systematic differences between human and machine
judgments, computer scientists have discovered several critical limitations of modern deep neural
network architectures—adding further support to the idea that CNNs might constitute at best an
incomplete model of human vision.

5.1. Adversarial Images

An adversarial image is an image that has been slightly altered to fool a deep neural network by
getting the network to misclassify an image that would have been otherwise correctly classified
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Figure 4

Deep neural networks are sensitive to noise perturbations. (a) Universal adversarial attacks. State-of-the-art
deep neural networks are vulnerable to universal (image-agnostic) adversarial attacks such that a very small
noise mask (shown magnified for GoogLeNet) applied to images would lead to misclassification with high
probability (actual adversarial samples with noise overlaid shown). Panel adapted from Moosavi-Dezfooli
et al. (2017) with permission. (b–d) Sample adversarial physical attacks (b) conducted on a traffic sign system
using stickers masked as graffiti, (c) using printed glasses to fool a face verification system, and (d) using a
sticker to cause a deep neural network to see bananas everywhere. Panel b adapted from Eykholt et al. (2018)
with permission. Panel c adapted from Sharif et al. (2019) with permission. Panel d adapted from Brown et al.
(2017) with permission. (e) Deep neural networks do not generalize to unseen noise patterns, as shown for a
network trained with additive Gaussian noise and tested on salt-and-pepper noise, which appear nearly
identical to human observers. Panel adapted from Geirhos et al. (2018) with permission.

with high confidence. That such adversarial attacks are possible is hardly surprising, since an im-
age can always be manipulated to change the appearance of an individual or an object. What is
surprising is that, in practice, artificial neural networks can be fooled by minute manipulations
that are barely visible to a human eye (see Figure 4). While such failure cases seem quite hard to
interpret, recent work has shown that, surprisingly, human observers are capable of correctly an-
ticipating a CNN’s classification output over such adversarial images—even for images described
as “totally unrecognizable to human eyes” (Zhou & Firestone 2019). Originally described as an
odd CNN behavior (Szegedy et al. 2013), adversarial images have become increasingly well stud-
ied,with researchers simultaneously working toward the design of methods for attacking networks
and methods of defending networks against these attacks.

For many common images, finding such perturbation appears to be strikingly easy—requiring
a single step in the direction of the gradient (see the sidebar titled Computing with Gradients) to
produce adversarial examples that are transferable from one network to another trained for the
same problem but with a different architecture. Adversarial attacks originally began as pixel per-
turbations optimized for individual images, but in recent years, attacks have become increasingly
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pernicious: Adversarial attacks can now be carried out using universal (image-agnostic) adversarial
perturbations, which when applied to almost any image will lead to misclassification (Moosavi-
Dezfooli et al. 2017), and they can be carried out in the real world—posing a significant risk for
biometric applications and for autonomous vehicles (for a review, see Gilmer et al. 2018). Rep-
resentative examples are shown in Figure 4, with adversarial examples shown in the domain of
object and traffic sign recognition using physical stickers (Brown et al. 2017, Eykholt et al. 2018),
as well as face recognition with physical 3D glasses worn by impersonating individuals (Sharif
et al. 2019).

While it is possible to carry out adversarial attacks using noise perturbations so small that they
are imperceptible to human observers (Brendel et al. 2017), it is also possible to fool networks
using completely unrecognizable images (Nguyen et al. 2015). Both of these extremes highlight
significant differences between the visual strategies leveraged by biological and artificial neural
networks.

5.2. The Need for Generalization

In addition to their sensitivity to adversarial noise, as discussed in the previous section, a growing
body of literature is showing that current deep neural networks are severely limited in their ability
to generalize to novel stimuli beyond the image data set used to train them.

Beyond adversarial noise, a small amount of filtering in the Fourier domain, which would
lead to very small behavioral differences with human observers, ends up significantly affecting
the recognition capabilities of deep neural networks ( Jo & Bengio 2017). Similarly, while CNNs
can learn to handle specific kinds of noise when noisy images are incorporated in their training
data sets, they are unable to generalize to unseen noise conditions—even when the noise patterns
are similar (seeFigure 4) (Geirhos et al. 2018).The lack of generalization of CNNs also extends to
objects embedded in novel contexts or occluded by out-of-context objects (Rosenfeld et al. 2018b,
Saleh et al. 2016, J.Wang et al. 2018). Even translation invariance, the property that motivated the
original architectural design behind CNNs (Fukushima 1980, LeCun et al. 1998, Riesenhuber &
Poggio 1999), has been shown to be surprisingly limited, in contrast to common belief (Azulay &
Weiss 2018). In fact, the deeper is the network, the less invariance to translation it exhibits, with
a shift by only a few pixels greatly affecting the network output.

Even more problematic, state-of-the-art neural architectures are capable of achieving a near-
perfect classification accuracy when trained on ILSVRC with randomly shuffled image labels (C.
Zhang et al. 2016). In other words, they are able to memorize associations between images and
random class labels. After all, this is not all that surprising: Given the very large number of free
parameters in these networks (on the order of tens of millions), they technically have the capacity
to memorize random associations between images and class labels, even for a large data set such as
ILSVRC (1.5 million images). Still, such an experiment opens up the possibility that the high level
of accuracy achieved by state-of-the-art neural networks could be due to their ability to memo-
rize images combined with the limited image variability and known biases present in benchmark
computer vision data sets (Torralba & Efros 2011).

Indeed, a subsequent study demonstrated that state-of-the-art CNNs trained on one image
data set do not generalize well to novel data from a novel test set generated by the authors, despite
the fact that the training and test sets exhibit near-identical statistics (Recht et al. 2018, 2019).
This highlights the possibility that much of the recent progress achieved in image categorization
could be due in part to the fact that researchers have been building on each other’s work (since
2010 in the case of ILSVRC) and have thus broken one of the most important rules in machine
learning: not to use the test set to tune any free parameters to maximize accuracy (i.e., by tuning
hyperparameters such as the number of layers).
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OBJECT DETECTION AND LOCALIZATION

Unlike in the image categorization tasks described in Section 2, where entire images are associated with a single
class label, object detection and localization involve the detection of one or multiple objects and the ability to draw
a bounding box around them. Region-based approaches are extensions of the CNNs that achieve state-of-the-art
results for object detection and localization. Rather than exhaustively scanning an image across all positions and
scales and classifying every such window, as in early computer vision algorithms, the basic idea behind region-based
approaches is to first run a generic object detector over the image, as in the R-CNN (Girshick et al. 2014), to bring
down the number of windows to be classified (called the region proposals) to a reasonable number (from millions
to a few thousands). These windows are then classified by a CNN to yield a class label for each bounding box
(including an option to reject the bounding box as containing any of the objects of interest). The approach was
improved in a series of papers from the fast R-CNN (Girshick 2015) to the faster R-CNN (Ren et al. 2015) and
the region-based fully convolutional networks (R-FCN) (Dai et al. 2016) by sharing convolutional layers between
the region proposal stage and the detection and localization stages—thus allowing the training of a single efficient
CNN for the entire system. A popular architecture includes YOLO (Redmon & Farhadi 2017), which can run with
near state-of-the-art accuracy but in real time at 30 fps. Rather than considering region proposals, YOLO looks at
the whole image at test time, so its predictions can potentially be informed by context. More recent developments
include the RetinaNet (Lin et al. 2019),which is both fast and accurate, and theMask-RCNN (He et al. 2019),which
learns to predict an object mask that is more detailed than the coarse bounding box returned by other architectures.
It is worth noting that region-based approaches for detection and localization detect object-like shapes in an image
exhaustively before attempting to recognize these objects. This does not seem consistent with the strategy used by
human observers, who have been shown during visual searches, unlike deep networks, to often miss targets that
have an atypical size relative to the surrounding objects in the scene—presumably highlighting a strategy used to
rapidly ignore distractors during visual search tasks (Eckstein et al. 2017).

A major issue for the field is that modern neural networks have become truly humongous. In
the past few years, the depth of state-of-the-art architectures has been rapidly increasing, with
some of the deepest CNNs now containing approximately 60 million parameters. This trend is
continuing with recent CNN extensions for visual recognition tasks beyond image categorization
(Figure 1), including object localization (see the sidebar titled Object Detection and Localiza-
tion), semantic segmentation, depth estimation, and dense pose estimation (see the sidebar titled
Image Segmentation and Other (Per-Pixel) Dense Image Prediction Tasks). As the number of free
parameters continues to exceed the number of samples available for training, these neural archi-
tectures maintain an ability to solve complex recognition tasks via brute-force memorization of
feature templates.

Visual reasoning tasks, for instance, offer a vivid example of this issue. The Synthetic Visual
Reasoning Test (SVRT) is a collection of 23 binary classification problems in which opposing
classes differ based on whether images obey an abstract rule (Fleuret et al. 2011). For the most
part, the visual relations depicted in the 23 SVRT problems are rather intuitive and obvious to a
human observer (Fleuret et al. 2011). Such an ability is by no means limited to human perception.
In a striking example from the work of Martinho & Kacelnik (2016), newborn ducklings were
shown to imprint on an abstract concept of sameness from a single training example at birth. Yet
modern CNNs appear to be unable to learn such same–different tasks even after being presented
with millions of training examples (Ellis et al. 2015, Kim et al. 2018, Stabinger et al. 2016). To
make matters worse, the issue has been overshadowed by the recent successes obtained with CNN
extensions called relational networks (RNs) (Santoro et al. 2017) on seemingly challenging visual
question-answering benchmarks ( Johnson et al. 2017). To directly test the RN ability to learn
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IMAGE SEGMENTATION AND OTHER (PER-PIXEL) DENSE IMAGE
PREDICTION TASKS

Dense image prediction tasks have become increasingly popular in recent years (Figure 1). Such tasks are referred
to as dense predictions because a neural network has to produce entire prediction maps for each individual image
(as opposed to a single class label in image categorization), as in boundary detection or local surface orientation
prediction, saliency, semantic segmentation, human part detection, and object detection to name just a few (addi-
tional classic tasks not shown in Figure 1 include dense optical flow and depth prediction). Also shown in Figure
1 is a task referred to as dense (3D body) pose prediction (Güler et al. 2018).

How can one go from architectures that return a single class label for the entire image, as in a standard CNN, to
an architecture capable of labeling every pixel in an image? Most of these methods follow the same general archi-
tecture, which combines a CNN, referred to as the encoder because it turns the input image into a downsampled
visual representation, with a decoder, followed by a readout processing stage that upsamples the visual representa-
tion and turns it back into a map the size of the original image. The fully convolutional network architecture was
one of the first successful approaches (Long et al. 2015,Maninis et al. 2018, Papandreou et al. 2015, Xie &Tu 2017).
Decoders in these models use 1 × 1 convolutions to combine upsampled activity maps from several layers of the
encoder. There also exist featured candidate operations for incorporating contextual information into local convo-
lutional activities, including dilated convolutions, which involve applying a stride to the kernel before convolving
the input (Long et al. 2015, Yu & Koltun 2016) and have helped improve performance in multiple computer vision
problems, from denoising (T. Wang et al. 2017) and semantic segmentation (Chen et al. 2018, Hamaguchi et al.
2017) to colorization tasks (R. Zhang et al. 2016). Another approach to dense prediction uses skip connections to
connect specific layers of a model’s encoder to its decoder. This approach was first described by Long et al. (2015)
as a method for more effectively merging coarse-layer information into a model’s decoder and later extended in the
U-Net (Ronneberger et al. 2015). Unpooling models eliminate the need for feature map upsampling by routing
decoded activities to the locations of the winning max-pooling units derived from the encoder. Unpooling is also a
leading approach for a variety of dense per-pixel prediction tasks, including segmentation, which is exemplified by
SegNet (Badrinarayanan et al. 2017). This model has a decoder that mirrors its encoder, with unpooling operations
replacing its pooling.

to solve same–different visual tasks, Kim et al. (2018) trained an RN using millions of examples
sampled from one set of objects; the network was incapable of recognizing the relation when tested
on a novel set of objects.

It is becoming increasingly clear that the ability of modern neural networks to generalize be-
yond training data is indeed quite limited, and that artificial networks do not yet truly support
neuronal representations and processes that naturally allow for flexible, rich reasoning about, e.g.,
objects and their relations in visual scenes.

6. CONCLUSIONS AND PATH FORWARD

Progress in the area of machine vision has been significant—arguably beyond what any researcher
in the field would have predicted only a decade ago. The variety and difficulty of modern visual
challenges that are driving the field are impressive—from recognizing thousands of objects, to
identifying individual faces among millions of distractors, to parsing complex natural scenes and
estimating the poses of articulated bodies. The accuracy of current machine vision systems on
these tasks is such that it is tempting to conclude that vision has been solved. Furthermore, these
machine vision innovations have beenmet with concurrent improvements in the ability of modern
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deep neural networks to account for neural data from the visual cortex. As a result, deep convolu-
tional neural networks have become de facto models of primate vision.

While progress has been significant, many obstacles remain: These network architectures can
be easily fooled by small noise perturbations that are barely perceptible to human observers, and
it is becoming increasingly clear that they exhibit relatively limited generalization capabilities be-
yond the data used to train them. Current artificial vision systems have only really been successful
in visual categorization tasks in scenarios that are limited to preattentive recognition in primates.
They are not yet capable of abstraction and exhibit a limited ability to learn abstract relational
rules beyond rote memorization.

Overall, it is unlikely that all the necessary building blocks of vision have been identified. Cur-
rent trends in automatic machine learning, where large-scale optimization algorithms automati-
cally identify optimal configurations of existing building blocks ( Jaderberg et al. 2017), are likely
to yield further quantitative gains in accuracy, but they are unlikely to produce the leap needed to
yield truly intelligent seeing machines. Such qualitative improvements are likely to require addi-
tional computations beyond those employed in current architectures.

Fortunately, motivated in some cases by neuroscience considerations, computer scientists have
already started to increase the size of the toolbox of computations available to deep neural net-
works, from attentional mechanisms, to more complex elementary units such as capsules (Hinton
et al. 2018, Sabour et al. 2017), to memory units with persistent states, all the way to content- and
location-addressable memories.

Attention, for instance, has become the subject of intensive research within the deep learning
community, and some of the most recent gains achieved in visual recognition can be attributed
to the inclusion of attention mechanisms in CNNs. While biology is sometimes mentioned as a
source of inspiration (Biparva & Tsotsos 2017, Chen et al. 2017, F. Wang et al. 2017), the atten-
tional mechanisms that have been considered remain rather limited in comparison to the rich and
diverse array of processes used by the primate visual system.Yet initial work has already shown that
using human supervision to cue these architectures to attend to image regions that are deemed
diagnostic for human visual categorization is showing great promise (Linsley et al. 2019).

More generally, it is likely that the depth of state-of-the-art CNN architectures already ex-
ceeds the depth of our visual system. The main assumption is thus that longer response times
allow for greater processing depth through time via recurrent circuits. The fastest behavioral
responses would thus reflect preattentive feedforward processing compatible with CNN archi-
tectures. However, longer response times would likely reflect the involvement of re-entrant and
other top-down signals when more time is available for visual processing.

Indeed, computer vision work is starting to demonstrate the benefits of systems that integrate
recurrent mechanisms: Feedback signals can provide prior information in predictive coding mod-
els (Han et al. 2018, Lotter et al. 2016, O’Reilly et al. 2017); help to solve contour tracing, in-
cremental grouping, and other visual recognition tasks that require learning long-range statistical
dependencies (Brosch et al. 2015, Linsley et al. 2018); and help improve recognition performance
(George et al. 2017, Sabour et al. 2017, Spoerer et al. 2017,Tang et al. 2018).There is also currently
a substantial increase of excitement for deep generativemodels for both language and vision,which
includes the generative adversarial networks (GANs) discussed in Section 3.2, and related mod-
els such as variational auto-encoders (Kingma & Welling 2014) and deep Boltzmann machines
(Salakhutdinov & Hinton 2009), which combine the complementary strengths of latent variable
models and deep neural networks. Such deep generative architectures constitute rich models of
visual scenes (Eslami et al. 2018) and provide an intriguing new perspective on the role of feedback
in the visual cortex (Lee et al. 1998).
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Similarly, our brains rely on multiple memory systems (Hassabis et al. 2017), and recent work
has shown the benefit of incorporating a memory into artificial neural networks to allow better
one-shot generalization (Vinyals et al. 2016). Popular recurrent neural networks such as Long
Short Term Memory (LSTM) units (Hochreiter & Schmidhuber 1997) and Gated Recurrent
Units (GRUs) (Cho et al. 2014) include gate mechanisms that control how the information is
maintained over time and are reminiscent of working memory. However, in both LSTMs and
GRUs, the sequence controller and memory storage are intermingled, whereas in our brains, the
two are separate (Tonegawa et al. 2015). Researchers have started to address these issues with the
development of a differential neural controller that learns to attend to and to read and write from
an external memory matrix to solve complex reasoning problems (Graves et al. 2016).

These extended neural networkmodels, and those to come, are likely to help scientists to better
understand how living brains work and help engineers create better thinking machines.

SUMMARY POINTS

1. The computational building blocks of modern deep neural networks were first identi-
fied by neuroscientists. However, recent progress has been driven entirely by computer
scientists via the development of additional computational blocks.

2. The visual representations derived from modern neural networks optimized for large-
scale visual categorization challenges initially yielded concurrent improvements in our
ability to explain visual representations found in the visual cortex.

3. However, the ability of current neural network architectures to explain experimental
data seems to have hit a ceiling. Recent work has highlighted key differences between
the visual strategies used by modern deep neural networks and those used by human
observers.

4. The ability of neural network architectures to generalize beyond training data appears
significantly more limited than was initially thought. Their ability to solve more general
visual reasoning tasks beyond visual categorization appears limited.

5. These limitations suggest the need to identify additional neural computations beyond
those already implemented in CNNs.

6. Recent innovations in deep learning that are at least in part motivated by neuroscience
considerations and extend the feedforward neural architectures described in this review
via attentional, mnemonic, and other feedback mechanisms offer exciting future direc-
tions to try to address current shortcomings in the development of machine vision algo-
rithms capable of truly intelligent visual behavior.
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