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   Abstract—Cross-document  relation  extraction  (RE),  as  an
extension of information extraction, requires integrating informa-
tion from multiple documents retrieved from open domains with
a  large  number  of  irrelevant  or  confusing  noisy  texts.  Previous
studies focus on the attention mechanism to construct the connec-
tion  between  different  text  features  through  semantic  similarity.
However,  similarity-based  methods  cannot  distinguish  valid
information from highly similar retrieved documents well. How to
design an effective algorithm to implement aggregated reasoning
in  confusing  information  with  similar  features  still  remains  an
open  issue.  To  address  this  problem,  we  design  a  novel  local-to-
global causal reasoning (LGCR) network for cross-document RE,
which enables efficient distinguishing, filtering and global reason-
ing  on  complex  information  from  a  causal  perspective.  Specifi-
cally,  we propose a  local  causal  estimation algorithm to estimate
the causal effect,  which is  the first  trial  to use the causal reason-
ing independent of  feature similarity to distinguish between con-
fusing  and  valid  information  in  cross-document  RE.  Further-
more,  based  on  the  causal  effect,  we  propose  a  causality  guided
global reasoning algorithm to filter the confusing information and
achieve  global  reasoning.  Experimental  results  under  the  closed
and the open settings of the large-scale dataset CodRED demon-
strate our LGCR network significantly outperforms the state-of-
the-art methods and validate the effectiveness of causal reasoning
in confusing information processing.
    Index Terms— Causal reasoning, cross document, graph reasoning,
relation extraction (RE).
  

I.  Introduction

R ELATION extraction (RE) aims to identify semantic rela-
tions between entities from unstructured text and plays a

crucial role in knowledge acquisition and application systems
[1]–[3].  Existing  works  mainly  study  this  task  from  two
aspects:  sentence-level  RE  [4]–[6]  and  document-level  RE
[7]–[9]. Sentence-level RE focuses on entity relations within a
sentence,  while  document-level  RE  requires  aggregation

across  sentences  in  a  document.  Recently,  researchers  find
that  there  are  over  57.6% of  relational  facts  in  Wikipedia
whose head and tail  entities are distributed in different docu-
ments  [10],  [11].  Therefore,  extracting  relational  information
in  the  cross-document  scenario  has  broad  practical  require-
ments and is the key to the further development of the knowl-
edge acquisition system.

{eh,et}

As  shown  in Fig. 1,  cross-document  RE  retrieves  relevant
documents  from  Wikipedia  based  on  the  given  entity  pair

, and builds multiple reasoning paths for global reason-
ing.  And  then  the  cross-document  RE system determines  the
true relation between two entities by jointly reasoning among
multiple reasoning paths. Intuitively, graph structure is a good
way  to  aggregate  global  information  from  reasoning  paths.
And on the document-level RE, graph-based methods achieve
SOTA performance [12]–[15]. However, since the documents
in  cross-document  RE  are  retrieved  from  Wikipedia,  entities
are not relevant in some paths. In Fig. 1, we can judge that the
relation between two entities is “Child” from the first path, but
there  is  no  relation  between  the  two  entities  in  the  second
path.  The  path  that  can  be  used  to  determine  the  relation
between  entities  is  the  valid  path,  while  the  path  that  has  no
association between entities is the confusing path. In this case,
the  neighborhood  aggregation  propagation  of  graph  neural
networks  will  cause  confusion  between  valid  and  confusing
paths.  Unfortunately,  the  retrieved  documents  are  superfi-
cially  similar,  and  there  is  no  clear  boundary  between  the
valid paths and confusing paths. Therefore, traditional similar-
ity-based  methods  cannot  distinguish  confusing  information,
and  a  feature  similarity  independent  method  is  needed  to
judge the validity of semantic units in the reasoning paths.

ITE

Recently, causal reasoning combined with deep learning has
shown strong advantages in many fields [16],  [17].  One goal
of causal reasoning is to discover causal associations between
input  features  and  outcomes.  Compared  with  the  similarity-
based association, causal association reduces the perplexity of
the apparent correlation of features and is therefore more sta-
ble and robust [18]. It suggests that we can measure the effec-
tiveness of the information contained in each semantic unit by
its  causal  association  with  outcomes.  To  estimate  the  causal
effect, a common method is to exploit the assumption of con-
ditional  ignorability  [19],  which  obtains individual  treatment
effect ( ) by comparing treatments and controls to estimate
causal effects independent of the remaining variables. Inspired
by  this,  in  the  face  of  confusing  reasoning  paths  with  irrele-
vant information, we can judge the validity of the information
from the perspective of  causal  association with the outcomes
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rather  than  the  similarity  (such  as  attention  scores)  between
features.

In this paper, we propose a novel method termed as local-to-
global  causal  reasoning  (LGCR)  network  to  solve  the  prob-
lem  of  aggregated  reasoning  in  confusing  information  for
cross-document RE. Specifically, we first  use a local relation
reasoning  module  to  identify  the  relation  between  the  head
and tail entities in each reasoning path. Based on this, we pro-
pose a local causal estimation algorithm. It implements coun-
terfactual  treatment  by  masking  the  expression  of  specific
semantic  unit  while  keeping  other  features  unchanged.  The
causal effect of the semantic unit is then estimated by compar-
ing the predicted distributions under the treatment and control
conditions,  where  the  control  indicates  that  all  features  are
kept  constant.  It  can  clearly  indicate  how  different  semantic
units contribute to the establishment of the relation in the rea-
soning  path  based  on  causality  rather  than  correlation.  Then,
we  propose  a  causality  guided  global  reasoning  algorithm  to
solve  the  problem of  global  reasoning  under  the  interference
of  confusing  information.  We  construct  a  global  reasoning
graph  for  cross-document  RE  based  on  the  co-occurrence  of
entity mentions and the structure of reasoning paths. With the
graph,  the  algorithm  uses  relative  causal  association  calcu-
lated  by  local  causal  effect  to  control  the  message  propaga-
tion ability between nodes. To minimize the influence of con-
fusing  semantic  unit  nodes  in  the  graph,  we  truncate  edges
with relative association less than a threshold and use a repa-
rameterization  algorithm  to  solve  the  gradient  propagation
problem. Experimental results on the closed and the open set-
tings  on  CodRED  demonstrate  that  our  method  substantially
outperforms previous models.

The main contributions of this work can be summarized as
follows:

1) We propose a novel LGCR network to aggregate reason-
ing  in  confusing  information  with  similar  features  from  a
causal perspective.  To our knowledge, we are the first  to use
the causal reasoning to solve the confusing information filter-
ing problem in cross-document RE.

2)  We  propose  a  local  causal  estimation  algorithm  to  esti-
mate  the  causal  effect  for  each  semantic  unit  to  distinguish
between confusing and valid information. Based on the causal
effect,  we  propose  a  causality  guided  global  reasoning  algo-
rithm  to  filter  confusing  information  and  realize  aggregation
global reasoning.

3)  Experiments  on  two  settings  on  a  large-scale  dataset
CodRED  show  that  our  method  significantly  outperforms
existing  state-of-the-art  methods.  Analytical  experiments
show that our method successfully discriminates target-related
and irrelevant semantic units and filter confusing information
in  global  reasoning,  which  demonstrates  the  effectiveness  of
causal reasoning in the processing of confusing information.  

II.  Related Work

1)  Relation  Extraction: The  earliest  RE  is  mainly  per-
formed within a sentence [20]–[23].  Subsequently,  to expand
the application scope of RE and improve accuracy, document-
level  RE has  been  fully  studied  in  recent  years  [24]–[26].  In
the  document-level  RE,  sequential  [27]  or  graph  structures
[15] are usually used to model documents and adaptive thresh-
olds  [9]  are  applied  to  determine  whether  relations  exist
between entities. In the graph-based method, Zeng et al.  [14]
build a mention graph and an entity graph for continuous rea-
soning, and Xu et al. [15] optimize the structure of the graph
through  iterative  reconstruction.  To  extract  accurate  knowl-
edge  from  a  wider  range  of  data,  Yao et  al.  [11]  start  the
exploration  of  cross-document  RE.  However,  most  of  the
existing methods cannot handle the confusing information fil-
tering problem in complex cross-document scenarios.  To this
end,  we  focus  on  the  modeling  of  cross-document  RE  with
causal methods in this paper.

2) Information Filtering: Filtering the input information can
effectively improve the performance of the model [28]. As we
need  to  filter  out  confusing  paths  from  retrieved  reasoning
paths, how to filter out valuable information from the massive
information  has  received  extensive  attention  [29]–[31].  The
challenge is to deal with confusing and incomplete data [32].
Regularization  constraint  is  an  effective  method  to  deal  with
incomplete  data.  It  can  be  used to  describe  the  temporal  pat-
terns  in  a  high-dimensional  and  sparse  tensor  to  assist  in  the
prediction  of  incomplete  data  [33];  or  to  enhance  the  robust-
ness  and  stability  of  the  algorithm  [34].  For  confusing  data,
Hu et al. [35] propose an inductive clustering algorithm based
on co-occur feature to identify confusing clusters in attributed
graph,  and  Shrikumar et  al.  [36]  discover  the  valid  informa-
tion in the confusing data based on propagating activation dif-
ferences.  Differently  from  the  previous  work,  we  use  causal
reasoning  to  distinguish  valid  information  from  confusing
information.

3)  Causal  Reasoning  Methods: Typical  causal  reasoning
methods aim to discover  and eliminate  confusing factors  and

 

Louis thus divorced Aliénor

(who went on to marry Henry

II of England. in France. Louis
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Augustus...
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Reasoning path 1, dh Reasoning path 1, dt

Reasoning path 2, dh  Reasoning path 2, dt 

Child

N/A

Head entity (e
h
) Tail entity (e

t
)

Louis VIII Alphonse of poitiers
Child

early 1240s...

 

{dh,dt}
Fig. 1.     An  example  of  cross-document  RE.  A  reasoning  path  consists  of
two documents  with head and tail entities, respectively. In a reasoning
path, two documents are connected by co-occurring entities, which are bridg-
ing  entities  connected  by  red  dotted  lines  (such  as “Louis” in  the  reasoning
path 1). Bridging entities also exist between reasoning paths, which are con-
nected  by  blue  dotted  lines  and  construct  the  global  connection.  Reasoning
path 1 is a valid path, “N/A” in reasoning path 2 indicates that there is no rela-
tion between the head and tail entities, and it is a confusing path. Both reason-
ing paths and entity mentions in the figure are semantic units used for reason-
ing.
 

WU et al.: LOCAL-TO-GLOBAL CAUSAL REASONING FOR CROSS-DOCUMENT RELATION EXTRACTION 1609 



spurious  associations  by  learning  balanced  weights  of  sam-
ples  [37]–[39].  As  a  branch  of  causal  inference,  counterfac-
tual reasoning is used to identify causal associations between
treatments  and  outcomes  [19],  and  is  mainly  used  in  recom-
mendation systems [40]  and medical  treatment  [41].  In  NLP,
it is often used to implement data augmentation to enhance the
generalization of the model [42],  [43].  For wider application,
Zhu et al. [44] use counterfactual contrast in dialogue genera-
tion  to  improve  the  quality  of  responses,  and  Wu et  al.  [16]
explore extracting key information from documents based on
causal  associations.  In  this  paper,  we  are  the  first  to  use  the
causal  association  between  different  semantic  units  and  out-
comes  to  guide  the  global  reasoning  of  information  in  cross-
document RE.  

III.  Methodology
  

A.  Problem Formulation

{dh,dt}

{eh,et}
D = {di

h,d
i
t}Ni=1

RD

Firstly, for convenience, the descriptions of some important
symbols used in this paper are summarized in Table I. Follow-
ing the previous work [11], in cross-document RE, we mainly
focus on the reasoning between multiple complementary rea-
soning paths. A reasoning path can be a document pair 
containing  the  head  entity  and  tail  entity  respectively,  con-
nected  by  bridging  entities.  So  we  formulate  the  cross-docu-
ment  RE  as  follows.  Given  two  entities  and  a  set  of
reasoning  paths  retrieved  from  Wikipedia,  the
goal of this paper is to reason within the complex information
of  these  paths  and  determine  the  global  relation  between
head and tail entities.

In this paper, we use causal estimation to evaluate the local
causal effect of each semantic unit. This paper has four kinds
of  semantic  units:  the  reasoning  path  unit  corresponding  to
each path,  the mention unit  corresponding to the head entity,
the tail  entity, and the bridging entity. Based on the informa-
tion  of  these  four  kinds  of  semantic  units,  we  can  infer  the
relation  between  entities  in  the  cross-document  scenario.  We
define the causality in our method as follows. During the local
reasoning,  the  semantic  information  of  a  particular  semantic
unit  contained in the reasoning path is  the cause (X),  and the
prediction  of  this  reasoning  path  is  the  result  (Y).  Therefore,
the causality is the mapping from X to Y, and the local causal
effect  of this semantic unit  can be estimated by the contribu-
tion of its semantic information to the reasoning result.  

B.  Local Causal Estimation

Y = f (X)

Tu
Tu = {0,1}

xu
XTu

ITE
Y = f (xu,XTu |Tu = 0)

f (0,XTu |Tu = 1)
xu

ITE xu

1)  Leveraging  Causal  Reasoning: The  counterfactual
method is used in causal reasoning to answer questions about
“what if” to discover causal  relationships between treatments
and outcomes based on the conditional ignorability [19]. Con-
ditional  ignorability  means  that,  given a  background variable
X,  the  treatment T and  the  potential  outcomes Y that  could
occur under the treatment and control (without treatment) are
independent of each other. In other words, it requires that the
background variable X is the same for the treatment and con-
trol when causal estimated. This avoids the different outcome
tendencies for the treatments due to the different distributions
of X. Therefore, the causal effect of the treatment can be esti-
mated by comparing two outcomes with the same background
variable X but with different treatment statuses. Based on this,
using  counterfactual  reasoning  requires  building  a  basic
model, which can be a nonlinear mapping  from con-
text X to outcome Y. As shown in Fig. 2, in order to estimate
the causal association of semantic units u in context X to out-
come Y,  we  need  to  apply  a  treatment  on X.  A  treatment

 in this paper represents the presence or absence of
the feature  of a specific semantic unit u with the remaining
variables  unchanged.  This  causal  effect  is  usually  mea-
sured by individual treatment effect ( ) [45], [46]. Specifi-
cally,  denoting  as  the  basic  model  for
counterfactual reasoning without treatment, the treatment out-
come can be denoted as , which indicates that
the  feature  cannot  express  during  the  inference.  Then,  the

 of feature  can be formulated as
 

ITE(xu) = f (xu,XTu |Tu = 0)− f (0,XTu |Tu = 1). (1)
ITE2)  Local  Reasoning  Module: To  estimate  the  of  each

semantic  unit,  we  construct  a  local  reasoning  module  as  the

 

TABLE I 

The Description of Some Important Symbols

Symbol Description

eh,et The head and tail entities for RE.

dh,dt The documents containing head and tail entities.

D A set of reasoning paths.

RD The global relation between head and tail entities.

X, Y, T The causal, result and treatment in LEC.

u The semantic unit that requires causal estimation.

xu The feature of semantic unit u.

hi
p,hi

h hi
t, 

The encoder representation of the reasoning path, head
entity and tail entity of reasoning path i.

h̄̄h̄h
i
p h̃̃h̃h

i
p, The local and global representation of reasoning path i.

ĥ̂ĥh
i
u

The treatment representation of semantic unit u in reason-
ing path i.

Iu The ITE of semantic unit u.

gggma The representation of node a in m-th layer in CGGC.

g̃̃g̃ga The global representation of node a obtained from CGGC.

ra,b
The relative causal effect between the node a and b in
CGGC.

s∗a,b
The connection selector of the edge between the node a and
b in CGGC.

P̄i P̃i P̂u
i, , h̄̄h̄h

i
p h̃̃h̃h

i
p

ĥ̂ĥh
i
u

The relation distribution of reasoning path i calculated by
local representation , global representation  and treat-
ment representation .

PD DThe final distribution of reasoning path set .
 

 

X

T = 0 Y

X

T = 1 Y

Treatment effect

estimation 

 
Fig. 2.     Estimate  the  causal  effect  of T on Y by  treatment-control  experi-
ment.
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{eh,et}
Xi = {di

h,d
i
t}

Hm

basic model for counterfactual reasoning, which aims to iden-
tify the relation of entity pair  within a reasoning path i
as  based  on  the  text  fragments  and  entity  men-
tions. We adopt BERT [47] as the document encoder in Fig. 3.
BERT is a language model based on the deep transformer [48]
structure and pre-trained on a large-scale corpus by the meth-
ods  of  masked language model  and next  sentence prediction.
Specifically,  given  a  sequence  of  tokens  as  input X,  BERT
first  converts  it  to the token embedding,  the segment embed-
ding, the position embedding respectively and sums them up.
Then,  BERT  encodes  the  input  embedding  with M-stacked
transformer blocks. For the m-th transformer block, the repre-
sentation  is updated by multi-head self-attention as
 

Q = Hm−1Wm
Q; K = Hm−1Wm

K ;V = Hm−1Wm
V (2)

 

Hm = FeedForward
(
Softmax

(
QK′
√

dimK

)
V
)

(3)

Wm
Q Wm

K Wm
V Q K V

dimK K

where , ,  are  learnable matrix, , ,  represent
the  query,  key  and  value  in  scaled  dot-product  attention
respectively, and  represents the dimension of .

{[UNUSEDk]}k=1,2
{[UNUSEDk]}k=3,4

To use BERT, for each reasoning path, documents are first
concatenated  and  tokenized.  Then,  we  insert  special  tokens
before and after all relevant entity mentions (
for  head  entity,  for  tail  entity  and  others
for remaining entity mentions). Since the length of documents
in each reasoning path far exceeds the limit of BERT, we only
extract  fragments  surrounding  the  head  and  tail  entities  for
experiments.

XiAfter processing the context input  of i-th reasoning path,
we leverage the BERT encoder to obtain the representation of
each token as
 

Hi = BERT(Xi) = {hi
cls,h

i
0, . . . ,h

i
n} (4)

hi
p

where n is the number of tokens in i-th reasoning path. We use
the “[CLS]” token representation of the last layer in BERT as
the  overall  representation  of  path i,  denoted  as .  For  the
head and tail  entities  in  reasoning path i,  we use  the  average

hi
h

hi
t

representation  of  all  the  tokens  they  contain,  denoted  as 
and . Then, we concatenate the three as the final local repre-
sentation of path i, denoted as
 

h̄̄h̄h
i
p = [hi

p; hi
h; hi

t]. (5)

P̄i

Finally, we use a fully connected layer as the local reason-
ing  module  in Fig. 3 to  calculate  the  local  distribution  of
entity pair in reasoning path i as
 

P̄i = h̄̄h̄h
i
pWl+ bl (6)

Wl blwhere  is the learnable matrix and  is the bias.

Y = f (X)

xu

h̄̄h̄h
i
p

ĥ̂ĥh
i
u

ITE
ĥ̂ĥh

i
p ĥ̂ĥh

i
h

ĥ̂ĥh
i
t

h̄̄h̄h
i
p

3) Local Causal Reasoning: The process of local causal rea-
soning is shown in the left half of Fig. 3. Taking the local rea-
soning  module  of  (6)  as  the  basic  causal  reasoning  model

, the causal effect of each semantic unit u on the out-
come Y can be estimated with the treatment. In this paper, the
treatment  means  whether  the  representation  of  feature  of
the specific semantic unit u is included in the local representa-
tion  of path i during the local reasoning. The treatment rep-
resentation of semantic unit u in reasoning path i is denoted as

. For the following graph reasoning, we need to estimate the
 for the four types of semantic units, respectively. For the

treatment  representation  of  reasoning  path i,  of  head
entity in reasoning path i and  of tail entity in reasoning path
i,  they  can  be  simply  implemented  by  replacing  the  corre-
sponding representation in  with a zero vector in (5) as
 

ĥ̂ĥh
i
p = [0; hi

h; hi
t]; ĥ̂ĥh

i
h = [hi

p;0; hi
t]; ĥ̂ĥh

i
t = [hi

p; hi
h;0]. (7)

hi, j
o

hi
p h̄̄h̄h

i
p

And for other entity mention j in reasoning path i, the same
as the representation of head and tail entities, we use the aver-
age representation of all the tokens it contains, denoted as .
To eliminate  the  influence  of  entity  mention j,  we subtract  it
from  the  reasoning  path  representation  of  path i in  to
obtain the treatment representation as
 

ĥ̂ĥh
i, j
o = [hi

p− hi, j
o ; hi

h; hi
t]. (8)

 

Local causal effect estimation Causality guided global reasoning

Local

reasoning

……

Local distribution Pi

Treatment
……

Treatment distribution Pi
u

Document

encoder
hip|Tu = 0

hiu|Tu = 1

[Doc_H1: Louis thus divorced Aliénor ... in France. Louis VIII (1187−1226)...], [Doc_T1: Louis decided to march ... his third brother Alphonse of Poitiers]
[Doc_H2: The youngest son of Louis VIII of France and Blanche of Castile...], [Doc_T2: King Louis IX of France had ... and Alphonse of Poitiers...] 

Local

causal

effect

Global graph

CGGC CGGC
Global

reasoning

……

Global distribution Pi

Prediction
P


Aggregation node Reasoning path node Mention node

Entity coreference edge Inter-path entity edge Path edge Mention-path edge

Path-agg edge Mention-agg edge

~−

^^

 
Fig. 3.     The overview of the LGCR. The red arrows represent local reasoning without the treatment, and the blue arrows represent the local reasoning after the
treatment. We calculate local effects by comparing the difference between the local distribution and treatment distribution. In the global graph, we omit some
types of edges for a clear presentation. The three types of mention nodes represent head, tail and bridging entities respectively. The edges represented by circles
represent the fully connected relationship between the nodes.
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P̂u
i

ĥ̂ĥh
i
u

Then,  we  can  calculate  the  treatment  distribution  of
semantic unit u based on the treatment representation  with
the same fully connected layer as the local reasoning module
in (6):
 

P̂u
i = ĥ̂ĥh

i
uWl+ bl (9)

ĥ̂ĥh
i
u ∈ {ĥ̂ĥh

i
p, ĥ̂ĥh

i
h, ĥ̂ĥh

i
t, ĥ̂ĥh

i, j
o } ITEwhere . And the  of each semantic unit u

is  derived  by  comparing  the  local  distribution  with  the  treat-
ment distribution in the way of (1) as
 

Iu = σ
(
Softmax(P̄i)−Softmax(P̂u

i )
)

(10)

ITEs
where σ is  the  RELU activation  function  to  ensure  that  only
the  of  categories  with  higher  scores  in  local  reasoning
are captured.  

C.  Causality Guided Global Reasoning
1) Global Graph Construction: To aggregate local informa-

tion over multiple reasoning paths, we first construct a global
heterogeneous graph. As shown in the right half of Fig. 3, the
graph has three types of nodes:

● Mention Node, which represents the entity mentions.
● Reasoning  Path  Node,  which  is  used  to  represent  the

overall information of each reasoning path.
● Aggregation  Node1,  which  is  a  virtual  extra  node  that

aggregates  reasoning  information  for  all  paths  and  alleviates
the long-distance dependency problem on the entire graph.

Then,  according  to  natural  understanding,  we  define  the
edges for six relations.

● Entity  Coreference  Edge: Mentions  referring  to  the
same entity are fully connected.

● Inter-Path Entity Edge: Mentions contained in the same
reasoning path are fully connected.

● Path  Edge: All  the  reasoning  path  nodes  are  fully  con-
nected.

● Mention-Path  Edge: Mention  nodes  are  connected  to
their corresponding path nodes.

● Mention-Agg  Edge: All  the  mention  nodes  are  con-
nected to the aggregation node.

● Path-Agg Edge: All the path nodes are connected to the
aggregation node.

With the connections above, we build the hierarchical rela-
tions within all  reasoning paths and an information exchange
bridge  for  entities  between  different  reasoning  paths,  so  that
the reasoning process is no longer limited to the single reason-
ing  path.  The  connections  to  the  aggregation  node  allow  all
semantic units to interact through two-hop neighbors, enabling
effective  information  integration.  And  the  connections  betw-
een entities and reasoning paths model the hierarchical seman-
tic structure within the document.

ggg0a

{hi
h,h

i
t,h

i, j
o }

2)  Causality  Guided  Graph  Convolution: After  construct-
ing the global graph, we design a causality guided graph con-
volution (CGGC) layer  to  aggregate  the information of  multi
reasoning paths. We first define the input feature  for node a
in CGGC. Specifically, we use the representation of the corre-
sponding entity mention in  for the mention node,

hi
puse the representation of the reasoning path  for the reason-

ing  path  node,  and  use  the  average  representation  of  all
semantic unit for the aggregation node.

On  this  basis,  the  local  causal  effects  obtained  in  Section
III-B-3) are introduced to control the ability of message prop-
agation between nodes. The relative causal effect between two
nodes a and b can be calculated with normalization as
 

ra,b =
exp(Ia · I′b)∑

v∈Ne(a) exp(Ia · I′v)
(11)

I′b Ib Ne(a)where  represents  the  transpose  of  and  represents
all one-hop neighbors of node a in e-th type edge.

ITE

ra,b
ra,b

ra,b

A  low  score  means  that  the  information  contained  in
the node has little influence on the final outcomes. Therefore,
to  eliminate  the  influence  of  these  noises,  we  truncate  the
interactive  connection  between  these  irrelevant  nodes  and
their  neighbors.  Specifically,  we  perform  an  adaptive  sam-
pling  on  the  graph  based  on  the  relative  causal  effect .
When  is smaller than a threshold, we truncate the connec-
tion  between  nodes a and b.  However,  this  operation  is  not
differentiable  during  the  back-propagation  process  to  opti-
mize  the  model.  Thus,  we  use  the  reparameterization  algo-
rithm  [49],  [50]  to  bypass  the  problem.  During  training,  we
first use  to construct a Bernoulli distribution as
 

{π1 := ra,b,π0 := 1− ra,b} (12)
π1 π0

sa,b

where  and  represent  the  probabilities  that  the  connec-
tion between nodes a and b is  preserved or  truncated respec-
tively. Then, we adopt Gumbel-Softmax approach to generate
the differentiable selective probability  as
 

sa,b =
exp((ln(π1)+g1)/λ)∑

k∈{0,1} exp((ln(πk)+gk)/λ) (13)

g0 g1where λ denotes relaxation temperature,  and  are indepen-
dent noises sampled from the Gumbel distribution [51]. Then,
we can build a connection selector as
 

s∗a,b = detach(s′a,b− sa,b)+ sa,b (14)
detach

s′a,b = 0 sa,b

s′a,b = 1 s∗a,b ∈ {0,1}

where “ ” represents  that  the  gradient  is  truncated  at
optimization time.  when  is smaller than the thre-
shold, and otherwise . In this way, we make 
differentiable.  Finally,  relative  causal  effects  are  introduced
into the convolution computation for the feature of node a in
CGGC as
 

ggg
m
a = σ

∑
e∈E

∑
b∈Ne(a)

gggm−1
b Wm

e ⊙ r∗a,b√
|Ne(a)||Ne(b)|


r∗a,b = ra,b ∗ s∗a,b (15)

⊙ E
Wm

e
gggma√

|Ne(a)||Ne(b)|

where  means  Hadamard  product,  represents  different
types  of  edges,  is  the  learnable  matrix  for  the e-th  type
edge of layer m,  is the representation of node a of layer m,
and  is the normalization constant based on the
graph structure.  

D.  Prediction and Training

g̃̃g̃ga = [ggg0a; . . . ;gggM
a ] ggg0a

After obtaining the graph representation, we concatenate the
outputs of each layer, denoted as , where  is

  
1 We set the ITE of the aggregation node to 1.
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h̃̃h̃h
i
p

h̃̃h̃h
i
p =

[g̃̃g̃gip; g̃̃g̃gih; g̃̃g̃git]

the representation of node a before CGGC and M is the num-
ber  of  CGGC  layers.  For  the  representation  of  reasoning
path i in  global  reasoning,  we  use  the  same  structure 

 as the local reasoning module. To obtain the global
relation  across  documents,  we  first  calculate  the  distribution
of local  relation for  path i based on the global  representation
by
 

P̃i = h̃̃h̃h
i
pWg+ bg (16)

Wg bg

P̂u
i

ĥ̂ĥh
i
u

P̂i P̂i =
1
Vi

∑Vi
u=0 P̂u

i
Vi

where  is the learnable matrix and  is the bias. Then, fol-
lowing Alvarez Melis and Jaakkola [52], we use a regulariza-
tion constraint to enhance the reasoning ability of local causal
estimation.  Specifically,  we  calculate  the  treatment  distribu-
tion  of  each semantic  unit u in  reasoning path i based on
the corresponding treatment representation  using the same
local reasoning module as (6). Then we calculate the average
distribution  for  each  reasoning  path i as ,
where  is  the  number  of  semantic  units  in  path i.  And  as
shown in the rightmost part of Fig. 3, we take the sum of the
distribution obtained from the three modules as  the final  dis-
tribution of reasoning path i for prediction as
 

Pi = αP̄i+βP̃i+γP̂i (17)

PD =
Max{Pi}Ni=1

where α, β, γ are hyperparameters. Finally, we select the high-
est  score  from  the  predicted  distributions  of  all  reasoning
paths  as  the  final  distribution  for  each  relation  as 

.
For  training,  due  to  the  existence  of  confusing  data  where

head and tail entities are irrelevant, we optimize the model by
a variant of circle loss [53] with a threshold, which is used to
distinguish  between  positive  relations  and  negative  relations.
Formally, the loss can be calculated as
 

L = ln

eθ + ∑
r∈Ωneg

epr

+ ln

e−θ + ∑
r∈Ωpos

e−pr

 (18)

pr PD
Ωneg Ωpos

PD RD

where  is  the  score  of  relation r in , θ is  the  threshold,
 and  are  the  sets  of  negative  and  positive  relations

respectively.  Finally,  we choose  the  relation  with  the  highest
score in  as the final relation . We summarize the over-
all flow of LGCR into pseudocode as shown in Algorithm 1.

Algorithm 1 LGCR

{Xi}Ni=1Input: The text for N reasoning paths .
RDOutput: The cross-document relation .

i ∈ [[N]]1: for reasoning path  do
Hi = BERT(Xi)2:　　 ;

h̄̄h̄h
i
p3:　　Use (5) to obtain the path representation ;

4:　　for semantic unit u in reasoning path i do
ĥ̂ĥh

i
u5:　　　　Calculate the treatment representation ;

Iu6:　　　　Estimate the causal effect  based on (10);
7:　　end for
8: end for

b ∈ Ne(a)9: for one node a and its neighbor  do
ra,b10:　　Use (11) to obtain the relative causal effect ;

ra,b11:　　Construct the Bernoulli distribution based on ;
s∗a,b12:　　Generate the connection selector ;

s∗a,b = 013:　　if  then
r∗a,b = 014:　　　　 ;

15:　　end if
16: end for
17: Update all nodes’ representations based on (15).

PD

h̄̄h̄h
i
p h̃̃h̃h

i
p ĥ̂ĥh

i
u

18: Calculate the final distribution  based on the representation
,  and  from three modules.

  

IV.  Experiments
  

A.  Experimental Settings

eh dh

et dt {dih,dit}ki=1

We conduct experiments on both the closed setting and the
open setting of CodRED [11],  which is  constructed based on
Wikipedia.  CodRED contains 276 relations types,  4755 posi-
tive  relational  facts,  and 13  686 positive  reasoning  paths,
alone with 25 749 N/A relational facts and 197 126 N/A rea-
soning  paths.  Therefore,  how  to  find  effective  information
from a  large  number  of  confusing  paths  is  a  huge  challenge.
For  the  closed  setting,  we  use  the  limited  reasoning  paths
given in the dataset. For the open-setting, we retrieve up to 16
reasoning  paths  for  each  given  entity  pair  from  Wikipedia
with entity count. The entity count is a retrieval rule that mul-
tiplies the occurrence number of  in  and the occurrence of

 in , and chooses the top k reasoning paths . Fol-
lowing previous works [5],  we use aggregate precision-recall
curves with the area under curve (AUC) and the maximum F1
on the curve and Precision@k (P@K) to evaluate our model in
the main experiments.

base

large

We implement our method with PyTorch for all codes, Hug-
gingFace  for  the  BERT-based  model  and  DGL for  the  graph
network. The number of CGGC layers is set to 2. The dropout
ratio of our model is set to 0.2. For the connection sampling,
the  relaxation  temperature λ is  set  to  0.2  and  the  truncation
threshold is set to 0.5. For the prediction, the α, β and γ are set
to 1.0, 0.8 and 0.01. For the optimization objective, θ is set to
10. During the training, we set the learning rate to 3e–5. And
for each experiment, we train the model for only two epochs.
Other parameters are consistent with previous work [11]. We
conduct  our  BERT  experiments  on  RTX 3090 GPU  and
for the RoBERTa  experiments we use A100-40G GPU.

We compare  our  proposed method LGCR with  the  follow-
ing works:

BERT-pipeline [11], which first uses a BERT-based docu-
ment-level RE model [8] to extract the relation graph between
entities in each document, and then performs cross-document
RE on the graph based on bridging entities.

BERT-attn [11],  which  simultaneously  extracts  the  rela-
tions of  entities  within and across  documents.  Specifically,  it
uses BERT to encode each reasoning path, then uses the rep-
resentation of “[CLS]” token to represent  the reasoning path,
and finally uses selective attention [5] to aggregate the global
information.

CorefBERT-RE [54]. CorefBERT is pre-trained by captur-
ing  the  coreferential  relations  in  context  and  is  often  used  in
document-level  RE.  We  use  the  CorefBERT  to  encode  each
reasoning  path  and  use  selective  attention  to  aggregate  the
global information.
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GAIN [14], which uses BERT to encode the context, com-
bines the mention-level and entity-level graph to reasoning in
the document.  We apply it  to cross-document RE by treating
reasoning paths as sentences.

PAR-DRE [55],  which is  the latest  improvement of GAIN
in dialogue relation extraction, using the position-aware graph
attention mechanism to address the distinction of similar topo-
logical structures in graph neural network.

Ecrim [56],  which  filters  the  confusing  information  in  the
reasoning path based on the entity co-occurrence relationship
and  the  similarity  of  the  sentences.  Then  it  uses  BERT  to
encode the context, and builds an association matrix between
entities  based  on  the  attention  mechanism  to  guide  informa-
tion aggregation.

In  addition,  we  also  compare  the  graph  reasoning  ability
with GCN [57], GAT [58] and Graph-SAGE [59].  

B.  Experimental Results

base large

1) Main Results: We conduct experiments based on two pre-
trained  models,  BERT  and  RoBERTa .  The  main
results are shown in Table II. We can see that:

●  Our  method  has  significant  improvement  over  the  base-
lines  on  all  metrics  in  both  the  closed  and  the  open  settings,
which demonstrates the effectiveness of our approach to guid-
ing  global  reasoning  through  the  local  causal  effect  on  this
task.

●  Compared  with  attention-based  methods,  graph-based
methods can more accurately judge the relation between entity
pairs  due  to  their  global  reasoning  ability.  And  LGCR
achieves  better  performance  by  filtering  confusing  semantic
unit information.

● Compared with the method of filtering confusing informa-
tion based on the semantic similarity (Ecrim), LGCR has sig-
nificant  advantages  in  both  the  settings.  Especially,  in  the
open setting, Ecrim suffers a large amount of confusing infor-

mation, resulting in a much weaker performance than LGCR,
which demonstrates  the advantage of  local  causal  effect  over
similarity in confusing information filtering.

large

base

base

large

●  All  RoBERTa -based  methods  achieve  effective
improvements compared with BERT -based methods in the
closed  setting.  Compared  with  other  methods,  our  method
LGCR  achieves  significant  improvements  on  both  BERT
and  RoBERTa ,  demonstrating  the  consistent  improve-
ment of LGCR under different parameter numbers.

ITE

2)  Ablation  Studies: To  demonstrate  the  effectiveness  of
each  module  we  proposed,  we  conduct  ablation  experiments
by deleting specific modules respectively. In the experiments,
“w/o  sampling” represents  the  removal  of  connection  sam-
pling; “w/o RC” represents the removal of regularization con-
straint  of  treatment  distribution; “w/o  LEC” represents  the
removal of local causal estimation, and the  of all seman-
tic units is set to 1; “w/o CGGC” represents the removal of the
whole  global  graph.  The  experimental  results  are  shown  in
Table III.

ITE

From the experimental  results,  we can see that  all  modules
contribute to performance improvement.  Among all  modules,
the removal of  LCE has the greatest  influence on the results.
This is because when the  of all semantic units is set to 1,
the graph will simply aggregate the information of neighbors,
which  is  seriously  disturbed  by  confusing  information.  This
demonstrates  the  effectiveness  of  LCE  in  filtering  confusing
information. The removal of CGGC also has a great influence
on the results, which indicates that global information reason-
ing is necessary for cross-document RE.

3)  Comparisons  Between  Different  Graph  Networks  for
Global  Reasoning: To  verify  the  effectiveness  of  causal
effects  in  graph  reasoning,  we  compare  some  representative
graph  neural  networks,  including  GCN  [57],  GAT  [58]  and
GraphSAGE  [59].  During  the  experiments,  we  only  replace
CGGC  with  the  corresponding  graph  neural  network  respec-

 

TABLE II 

‡Main Results of Two Benchmark Settings. Results With  are Reported in Their Original Papers. Results With * are We
Reproduced From the Source Code of the Corresponding Paper in Cross-Document RE

Model

Closed Open

Dev Test Dev Test

AUC F1 P@500 P@1000 AUC F1 AUC F1 P@500 P@1000 AUC F1

BERT-pipeline‡base 17.45 30.54 30.60 26.70 18.94 32.29 14.07 26.45 27.00 19.90 16.26 28.70

BERT-attn‡base 47.94 51.26 62.80 51.00 47.46 51.02 40.86 47.23 59.00 46.30 39.05 45.06

CorefBERT-RE∗base 49.91 53.17 65.27 52.95 50.56 54.06 41.87 47.72 57.88 47.45 43.56 49.39

GAIN-BERT∗base 51.04 53.71 63.07 53.45 50.56 54.47 43.77 47.91 57.68 47.95 44.62 49.01

PAR-DRE-BERT∗base 55.92 56.29 69.46 57.74 54.62 55.63 45.98 49.16 64.27 49.55 45.80 50.61

Ecrim-BERT∗base 59.92 59.99 74.65 60.44 59.46 59.43 41.15 47.26 60.88 47.25 43.98 48.39

LGCR-BERTbase 63.17 61.67 76.65 61.84 61.08 60.75 51.48 52.96 70.06 52.19 50.15 53.45
RoBERTa-attn∗large 52.24 54.21 67.07 53.95 50.41 54.97 42.60 48.33 60.68 48.15 42.81 48.87

CorefRoBERTa-RE∗large 51.10 55.74 67.27 55.24 49.43 53.65 41.42 48.27 60.48 48.35 40.38 48.01
GAIN-RoBERTa∗large 57.26 58.21 70.06 58.04 53.34 57.93 46.25 51.07 61.88 51.15 43.30 50.96

PAR-DRE-RoBERTa∗large 59.26 59.80 76.25 59.64 55.01 58.58 48.35 52.24 66.67 52.25 46.17 52.32
Ecrim-RoBERTa∗large 61.83 60.54 76.05 60.95 60.39 61.71 44.19 49.14 60.87 49.35 41.75 49.84

LGCR-RoBERTalarge 64.76 63.18 77.25 63.74 63.03 63.79 52.36 55.15 71.66 55.14 49.05 55.37
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tively  and  keep  all  other  structures  and  hyperparameters
unchanged.  The  results  are  shown  in Table IV.  From  the
experimental results we can see that compared with the widely
used  graph  neural  networks,  our  method  has  a  significant
improvement  in  performance  (3.23% improvement  in  AUC
and  2.66% improvements  in  F1  in  the  closed  setting).  This
proves  that  it  is  effective  to  introduce  causal  effects  into  the
neighborhood propagation of graph neural networks.  In addi-
tion,  it  also  shows  that  confusing  filtering  through  causal
effects is an effective approach to the global reasoning.  

C.  Further Analysis

α = 1.0
γ = 0.01

β = 0.8
α = 1.0

β = 0.8

α = 1.0 β = 0.8
γ = 0.01

1) Impacts of Important Hyperparameters: The three hyper-
parameters  in  (17)  are  critical  to  the  performance  of  our
model, so we use the grid search to find the most appropriate
values under the closed setting. Firstly, we need to balance the
weights between local and global reasoning, so we set 
and  to  search  for β,  the  results  are  shown  in Fig. 4.
We  can  see  that  the  model  achieves  the  best  performance
when . Then, we need to determine how the regulariza-
tion constraint exerts on the model. Therefore, we set 
and  to search for γ, the results are shown in Fig. 5. We
can see that the best value for γ is 0.01. Finally, the hyperpa-
rameters  we  use  for  model  training  are ,  and

.
2)  Computational  Complexity  Analysis: From  the  perspec-

tive  of  computation,  our  model  can  be  mainly  decomposed
into  three  parts,  which  are  BERT  encoder,  LCE  and  CGGC.
Therefore, we will mainly analyze the three modules from two
aspects, which are time complexity and space complexity. To
this end, we gradually delete specific modules on LGCR simi-
lar  to  ablation  experiments  in  Section  IV-B-2),  and  perform
statistics on the running time and the number of parameters of

different  models.  In  addition  to  the  three  main  modules  of
appeal,  we  also  conduct  the  experiment  on  connection  sam-
pling.  We  use  four  RTX3090  GPUs  to  conduct  experiments
on the inference of validation set, and each GPU corresponds
to one CPU core for model calculation and two CPU cores for
data processing. The experimental results are shown in Table V,
and “w/o  CGGC,  LEC” means  that  only  the  BERT  encoder
and a linear layer are left. From the results we can see that:

● In terms of the number of parameters, almost 90% of the
parameters are concentrated on BERT. This is because BERT
has  the  embedding  layer  for  large-scale  vocabulary  and  the
multi-layer transformer structure. This is the foundation of its
powerful  representation  capabilities.  In  addition,  CGGC uses

 

TABLE III 

Ablation Study by Removing the Main Components, Where “w/o” Indicates Without. “Sampling”, “RC”, “LCE”, “CGGC”
Refer to Causal Connection Sampling, Regularization Constraint, Local Causal Estimation

and Causality Guided Graph Convolution

Model
Closed Open

AUC F1 P@500 P@1000 AUC F1 P@500 P@1000

LGCR 63.17 61.67 76.65 61.84 51.48 52.96 70.06 52.19

w/o sampling 61.41 59.30 75.45 59.34 50.74 51.45 68.66 51.35

w/o RC 61.64 60.28 75.65 60.64 50.92 51.31 68.26 51.65

w/o LCE 51.89 53.79 70.06 53.45 33.71 40.70 52.10 40.86

w/o CGGC 55.31 53.77 68.26 53.95 45.24 47.43 60.88 47.55
 

 

TABLE IV 

baseCompared With Different Graph Networks for the Global Information Aggregation Based on BERT  Encoder.
BERT-base Means Without Any Global Graph Reasoning

Model
Closed Open

AUC F1 P@500 P@1000 AUC F1 P@500 P@1000

BERT-base 55.37 52.19 67.65 54.84 45.20 48.08 62.26 47.05

BERT-GAT 58.46 56.89 73.05 56.65 47.12 49.41 66.87 50.15

BERT-GCN 60.17 59.37 73.25 59.54 49.74 50.64 67.86 51.05

BERT-GraphSAGE 60.93 60.06 74.85 60.94 49.88 51.28 67.07 51.45

BERT-LGCR (Ours) 63.17 61.67 76.65 61.84 51.48 52.96 70.06 52.19
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Fig. 4.     The hyperparameter search results for β.
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Fig. 5.     The hyperparameter search results for γ.
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multiple networks to handle different types of edges, so it also
has 10.19M parameters.  Since the LCE and the local  reason-
ing  module  share  parameters,  no  additional  parameters  are
added.

●  After  deleting  the  connection  sampling  module,  the  run-
ning  time  increases.  The  reason  is  that  although  the  connec-
tion sampling module will increase the calculation amount, it
can cut off the connection between irrelevant nodes to reduce
the calculation of CGGC.

●  Similarly  to  the  proportion  of  parameters,  in  LGCR,  the
calculation  of  BERT  occupies  most  of  the  time.  In  addition,
due to the need to calculate the ITE and node representation of
each semantic unit, the LCE (7.14% in the closed setting) and
CGGC (12.50% in the closed setting) also consume a certain
amount of time. Overall, the increased computational require-
ments of LCE and CGGC over BERT are acceptable relative
to the performance improvement.

base large

3)  Comparisons  of  Local  Reasoning  Ability: The  local
causal effects are estimated based on the local reasoning mod-
ule,  so  the  better  local  reasoning  ability  can  also  estimate
more  accurate  causal  effects.  To  this  end,  we  evaluate  the
local reasoning ability of different methods. Due to the exces-
sive number of confusing paths, we only calculate the F1 and
accuracy  of  valid  paths.  The  results  are  shown  in Table VI.
We can see  that  the  accuracy of  local  reasoning is  low since
the  relation  cannot  determine  accurately  based  on  the  single
path in cross-document RE. This also shows that it is difficult
to  distinguish  between  relevant  paths  and  irrelevant  paths
directly  using  classification  algorithms.  For  LGCR,  the  local
reasoning ability of BERT -based and RoBERTa -based
models is  not  significantly different  in the open setting,  indi-
cating that their accuracy has reached an upper bound, and it
is of little significance to continue to increase model parame-
ters  in  the  real  open  domain  scenarios.  LGCR  has  a  signifi-
cant advantage over other methods in local reasoning because
we reduce the influence of irrelevant information based on the
local causal effect. While other methods will cause confusion.
This demonstrates the effectiveness of our method.

4) Impacts of the Number of Confusing Paths: Since the rea-
soning paths are obtained by retrieval, they inevitably contain
confusing paths irrelevant to the target. To evaluate the impact
of such confusing paths, we calculate the cumulative F1 met-
ric when the number of confusing paths goes from 0 to k for
BERT-attn,  BERT-GAIN,  BERT-Ecrim  and  BERT-LGCR.

0 ∼ 2

The results are shown in Figs. 6 and 7 for the closed and the
open setting respectively. We can see that when the number of
confusing  paths  is  about ,  the  performance  of  different
methods  is  similar,  but  when  the  number  continues  to
increase,  our method starts  to show advantages.  This demon-
strates  the effectiveness  of  our  method in  identifying confus-
ing semantic units based on local causal effects, and the abil-
ity to better handle irrelevant information in global reasoning.
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Fig. 6.     The cumulative F1 when the number of confusing paths goes from 0
to k for the closed setting.
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Fig. 7.     The cumulative F1 when the number of confusing paths goes from 0
to k for the open setting.
 

0 1

We observe that in Fig. 6, there is a decrease in the perfor-
mance  curve  when  the  number  of  confusing  paths  increases
from  to .  This  is  caused by the distribution of  data.  In  the
CodRED,  since  the  reasoning  paths  are  retrieved  from
Wikipedia,  the  number  of  reasoning  paths  associated  with

 

TABLE V 

The Results of Computational Complexity Analysis,
Where “w/o” Indicates Without, “s” Represents

Second, “it/s” is Used to Describe How Many
Instances are Calculated Per Second

Closed Open
Parameters

Time Speed Time Speed

LGCR 112 s 49.71 it/s 195 s 28.55 it/s 119.14M

w/o sampling 114 s 48.84 it/s 198 s 28.12 it/s 119.14M

w/o LEC 104 s 53.54 it/s 185 s 30.10 it/s 119.14M

w/o CGGC 98 s 56.82 it/s 183 s 30.43 it/s 108.95M

w/o CGGC, LEC 89 s 62.56 it/s 171 s 32.56 it/s 108.95M
 

 

TABLE VI 

Comparison of Local Reasoning Abilities of Different
Methods. The F1 are Averaged By “Weighted”

Model
Closed Open

Acc F1 Acc F1

baseBERT-attn 25.80 33.32 18.12 25.03

baseCorefBERT-RE 28.38 36.56 17.93 25.12

baseGCN-BERT 35.57 42.63 19.33 26.12

basePAR-DRE-BERT 38.08 46.73 20.16 28.32

baseEcrim-BERT 41.64 48.96 12.42 18.90

baseLGCR-BERT 44.84 53.27 21.29 30.10

largeRoBERTa-attn 29.48 37.30 17.28 23.50

largeLGCR-RoBERTa 47.11 56.76 21.90 30.82
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each  entity  pair  is  not  fixed.  This  is  in  line  with  the  actual
application  scenario.  To  explain  this  phenomenon,  we  count
the  average  number  of  reasoning  paths  corresponding  to  the
different  numbers  of  confusing  paths  in  the Fig. 6.  We  find
that when the number of confusing paths is 0, 1, 2 and 3, the
corresponding  average  number  of  reasoning  paths  is  2.00,
1.26,  2.28  and  5.28,  respectively.  This  shows  that  when  the
number of confusing paths is 1, the corresponding valid paths
information  is  extremely  sparse.  With  the  increase  of  valid
reasoning  paths,  the  performance  of  the  model  gradually
increases until  the number of confusing paths is  too large.  In
addition,  a  similar  situation  exists  in  the  open  setting  since
some  entity  pairs  cannot  retrieve  enough  16  reasoning  paths
from Wikipedia. This phenomenon does not affect our conclu-
sion that  our  method can better  deal  with  irrelevant  informa-
tion in the confusing path. Besides, it also proves the premise
that  global  reasoning  of  multiple  paths  is  required  to  obtain
the information in cross-document RE.

5)  Evaluations  of  Local  Causal  Estimation  Ability: Since
our method uses LCE to guide the aggregation of global infor-
mation,  we evaluate  the  causal  reasoning ability  of  LGCR in
this section. Following the setting from [60]–[62], we use pre-
dictive accuracy as the evaluation metric. It  refers to re-feed-
ing the  extracted results  into  the  target  model  and measuring
its  fidelity  by  how  it  will  recover  the  target  predictions.
Specifically, in our work, we obtain the local causal effect of
the  semantic  unit  corresponding  to  each  node  on  the  graph
through LCE. On this basis, the local causal effects are sorted
from  small  to  large,  and  the  feature  expression  of  the  corre-
sponding semantic units is masked with a zero vector in order
according to a proportion ρ. Then we re-input the masked fea-
tures into the original model to observe the change of its accu-
racy.  Besides,  we  provide  two  attribution  methods  [63]  and
the LCE guided by ground truth labels for comparison.

● Gradient,  which  calculates  the  gradient  of  the  probabil-
ity  distribution  of  the  final  target  output  to  the  feature  of
semantic units, and uses it as the contribution of the feature to
the result.

● Attn,  which  calculates  the  average  attention  weights  of
each  node  feature  relative  to  the  rest  of  the  tokens  based  on
the attention weights of the last layer of the BERT, and takes
them as the importance of node features.

● LGCR,  which  is  the  method proposed  in  this  paper  that
uses  the  local  causal  effects  to  measure  the  contribution  of
each node feature to the final prediction results.

● LGCR-GT,  which  is  an  extension  of  the  LGCR,  using
the ground truth labels instead of the prediction results of the
model to obtain the local causal effect. It can be considered as
an upper limit of the local causal effect estimation.

The results are shown in Table VII for the closed setting and
Table VIII for the open setting.

From the experimental  results,  we can see that  our  method
outperforms  the  baseline  in  both  the  closed  setting  and  the
open  setting.  With  the  increase  of  masking  ratio,  the  expres-
sion of features that are considered to be irrelevant to the tar-
get  is  inhibited,  and  the  advantage  of  LGCR  over  Gradient
and  Attn  becomes  more  obvious.  When  the  masking  ratio
reaches  to  70%,  the  F1  of  LGCR  in  the  closed  setting  only

decreases  by  13.30% (from 61.67  to  53.47),  while  the  F1  of
Gradient and Attn decrease by 17.48% (from 61.67 to 50.89)
and 28.41% (from 61.67 to 44.15), respectively. Similarly, the
F1  of  LGCR  in  the  open  setting  only  decreases  by  16.88%
(from  52.96  to  44.02),  while  the  F1  of  Gradient  and  Attn
decrease by 19.88% (from 52.96 to 42.43) and 25.98% (from
52.96  to  39.20),  respectively.  This  shows  that  when  the  fea-
tures with a low contribution to the target are masked, the fea-
tures extracted by LGCR can better recover the results of the
original model, while the similarity and gradient based meth-
ods  are  less  effective.  This  also  demonstrates  the  effective-
ness  of  capturing  key  semantic  units  through LCE and using
them to guide the global reasoning in cross-document RE.

LGCR-GT  is  an  upper  bound  of  LCE,  which  captures  the
local  causal  effects  of  different  semantic  units  when  our
model  can  judge  the  relation  between  entities  with  complete
accuracy. From the experimental results, we can see that with
the  increase  of  the  masking  ratio,  the  performance  of  the
model continues to improve, even exceeding the results using
the full node. The accuracy does not obviously decrease until
the masking ratio reaches 90%, when the valid information is

 

TABLE VII 

The Evaluation of Local Causal Estimation Ability for
the Closed Setting. Full Node Denotes That No

Features of Semantic Units are Masked

Mask ratio Method
Closed

AUC F1 P@500 P@1000

Full node LGCR 63.17 61.67 76.65 61.84

ρ = 30%

Gradient 58.13 58.17 71.06 58.34
Attn 59.21 57.25 73.65 57.24

LGCR 62.80 60.07 75.84 60.24

LGCR-GT 69.23 64.05 83.23 64.04

ρ = 40%

Gradient 57.03 57.00 70.06 57.04
Attn 54.94 53.45 69.46 53.75

LGCR 60.81 59.05 73.85 58.94

LGCR-GT 69.58 64.10 82.64 64.54

ρ = 50%

Gradient 54.70 55.56 68.66 55.45
Attn 49.19 49.86 65.07 49.85

LGCR 57.74 57.39 70.86 57.34

LGCR-GT 69.04 64.05 82.24 64.24

ρ = 60%

Gradient 52.22 53.82 66.67 54.15
Attn 43.77 46.79 58.28 45.75

LGCR 56.34 56.43 70.46 56.24

LGCR-GT 69.37 64.33 84.23 64.94

ρ = 70%

Gradient 47.66 50.89 63.67 50.85
Attn 39.66 44.15 54.96 44.26

LGCR 52.63 53.47 69.06 53.25

LGCR-GT 67.81 63.58 84.23 64.04

ρ = 90%

Gradient 27.39 35.66 44.71 34.97
Attn 26.92 34.00 40.72 32.97

LGCR 34.63 38.79 55.89 38.16

LGCR-GT 50.21 50.78 72.06 50.15

ρ = 95% LGCR-GT 30.47 33.89 50.70 32.67
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masked.  For  the  open setting,  since  we retrieve  16 reasoning
paths for each sample,  there are more semantic units.  So this
ratio raises to 95%. This proves our previous assumption that
in  cross-document  RE,  there  are  irrelevant  confusing  paths
and semantic units, which need to be filtered. When the irrele-
vant confusing semantic information is accurately filtered, the
performance of the model can be further improved. This also
shows  that  in  our  method,  LCE  and  RE  have  mutually  rein-
forcing  effects.  That  is,  better  LCE  can  enhance  the  perfor-
mance the model,  and more accurate RE can in turn enhance
the LCE.

based large

6) Case Studies: We show two case studies in Figs. 8 and 9
based  on  BERT  and  RoBERTa ,  respectively.  For
each sample, the upper part of the figure is the reasoning path,
where  the  head  entity  is  represented  in  red,  the  tail  entity  is
represented  in  blue,  and  the  same  background  color  repre-
sents  the  same  bridging  entity.  We  provide  two  reasoning
paths for each sample, where the one with specific local rela-
tion  is  the  relevant  path,  and  the  one  with  the  local  relation
“N/A” is the irrelevant confusing path. The “[SEP]” is used to

split the two documents in the reasoning path. The lower part
of  the  figure  is  the  global  inference  graph  constructed  based
on these two reasoning paths, and the nodes in the graph cor-
respond to the semantic units of the same number in the rea-
soning  paths.  For  clearer  visualization,  we  only  present  the
mention nodes, omit some of the edges, and multiply the rela-
tive  causal  effect  by  ten.  Beside  the  LCE  proposed  in  this
paper,  we  also  use  two  other  methods  based  on  similarity  to
obtain the associations between semantic nodes, which are the
similarity of cosine and the similarity of GAT. For the similar-
ity  of  cosine,  we  calculate  the  similarity  between  each  node
feature before global graph reasoning by cosine distance. For
the attention of GAT, we replace the CGGC in our model with
GAT,  and  extract  the  attention  weights  between  nodes  from
the last  layer.  Except for GAT, the weights of the edges pre-
sented  are  before  softmax.  The  results  are  marked  on  the
edges between nodes in the figure respectively.

From the  degree  of  association between nodes,  we can see
the  advantages  of  LCE  over  similarity-based  methods.  The
most  obvious  difference  lies  in  the  degree  of  association
between  different  nodes  representing  the  same  entity.  For
example,  the  head  entity “Patty  Bouvier” in Fig. 8 is  repre-
sented by node “1” and node “6” in the two reasoning paths,
respectively.  Since  these  are  different  representations  of  the
same entity, and the context is the interpretation of it, although
BERT and GAT can encode context-related information in the
entity  representation,  a  high  degree  of  similarity  is  still  pre-
served between the two representations. This is also reflected
in the figure. For both the similarity of cosine and the similar-
ity of GAT, there is no significant difference in the degree of
association between nodes “1” and nodes “6” compared with
other  edges.  Based  on  this  observation,  we  can  see  that  the
similarity-based methods are sub-optimal to tackle this kind of
situation.  In  our  method LGCR,  we can  see  that  the  associa-
tion between node “1” and “6” is very low. Therefore, in the
global  reasoning,  the  message  propagation  between  the  two
nodes will be truncated, and the irrelevant confusing informa-
tion in the reasoning path “2” will  hardly affect  the effective
information in reasoning path “1”. This is a significant advan-
tage of our method over similarity-based methods. In addition,
this association based on causal estimates also provides inter-
pretability to our method.  

V.  Conclusion

In this paper, we propose a novel local-to-global causal rea-
soning  (LGCR)  network  to  solve  the  problem  of  aggregated
reasoning  in  confusing  information  with  similar  features  for
cross-document  RE.  We  propose  a  local  causal  estimation
algorithm  to  innovatively  use  the  local  causal  effects  of
semantic  units  to  distinguish  confusing  information  in
retrieved documents from the open domain. For global reason-
ing, we propose a causality guided global reasoning algorithm
to filter confusing information and control the message propa-
gation in a global graph by calculating the relative causal rela-
tion  between  nodes  through  the  local  causal  effects.  The
experimental  results  under  the  closed  and  the  open  settings
demonstrate  that  our  method  effectively  discriminates  target-

 

TABLE VIII 

The Evaluation of Local Causal Estimation Ability for
the Open Setting. Full Node Denotes That No

Features of Semantic Units are Masked

Mask ratio Method
Open

AUC F1 P@500 P@1000

Full node LGCR 51.48 52.96 70.06 52.19

ρ = 30%

Gradient 48.52 50.76 66.47 49.05
Attn 49.55 50.53 65.67 49.65

LGCR 51.45 51.18 68.26 50.75

LGCR-GT 57.43 55.56 74.45 55.54

ρ = 40%

Gradient 47.03 48.26 64.07 48.55
Attn 46.75 48.24 63.87 48.05

LGCR 49.60 49.72 65.67 49.95

LGCR-GT 57.63 55.56 74.65 55.74

ρ = 50%

Gradient 45.08 47.98 61.68 46.35
Attn 41.93 44.35 58.88 44.36

LGCR 47.30 48.26 62.87 47.75

LGCR-GT 57.88 55.71 74.25 55.54

ρ = 60%

Gradient 42.21 45.24 59.88 45.55
Attn 39.18 42.58 56.09 42.26

LGCR 45.20 46.46 60.68 46.65

LGCR-GT 57.64 55.19 74.25 54.75

ρ = 70%

Gradient 36.40 42.43 53.29 41.76
Attn 34.50 39.20 48.30 38.46

LGCR 42.53 44.02 56.89 43.96

LGCR-GT 57.28 54.79 75.05 54.35

ρ = 90%

Gradient 21.93 31.79 34.93 29.97
Attn 22.93 29.78 36.73 29.27

LGCR 33.05 37.47 50.70 37.26

LGCR-GT 51.05 50.52 71.46 50.55

ρ = 95% LGCR-GT 34.80 37.43 55.09 36.96
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related  and  irrelevant  information,  and  select  effective  infor-
mation from confusing information for aggregated reasoning.
In future work, we hope to apply this method of using causal
reasoning  to  deal  with  confusing  information  to  more  fields,
such as multimodal image-text joint reasoning.
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baseFig. 8.     The case study of our LGCR methods based on BERT . We also provide the similarity of cosine and the similarity of GAT for comparison.
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largeFig. 9.     The case study of our LGCR methods based on RoBERTa . We also provide the similarity of cosine and the similarity of GAT for comparison.
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