
- Contents lists available at sciencedirect.com
Journal homepage: www.elsevier.com/locate/jval
Decision-Analytic Modeling: Past, Present, and Future
Using Machine Learning Applied to Real-World Healthcare Data for
Predictive Analytics: An Applied Example in Bariatric Surgery
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Objectives: Laparoscopic metabolic surgery (MxS) can lead to remission of type 2 diabetes (T2D); however, treatment
response to MxS can be heterogeneous. Here, we demonstrate an open-source predictive analytics platform that applies
machine-learning techniques to a common data model; we develop and validate a predictive model of antihyperglycemic
medication cessation (validated proxy for A1c control) in patients with treated T2D who underwent MxS.

Methods: We selected patients meeting the following criteria in 2 large US healthcare claims databases (Truven Health
MarketScan Commercial [CCAE]; Optum Clinformatics [Optum]): underwent MxS between January 1, 2007, to October 1, 2013
(first = index); aged $18 years; continuous enrollment 180 days pre-index (baseline) to 730 days postindex; baseline T2D
diagnosis and treatment. The outcome was no antihyperglycemic medication treatment from 365 to 730 days after MxS. A
regularized logistic regression model was trained using the following candidate predictor categories measured at baseline:
demographics, conditions, medications, measurements, and procedures. A 75% to 25% split of the CCAE group was used
for model training and testing; the Optum group was used for external validation.

Results: 13050 (CCAE) and 3477 (Optum) patients met the study inclusion criteria. Antihyperglycemic medication cessation
rates were 72.9% (CCAE) and 70.8% (Optum). The model possessed good internal discriminative accuracy (area under the
curve [AUC] = 0.778 [95% CI = 0.761-0.795] in CCAE test set N = 3527) and transportability (external AUC = 0.759 [95% CI =
0.741-0.777] in Optum N = 3477).

Conclusion: The application of machine learning techniques to real-world healthcare data can yield useful predictive models
to assist patient selection. In future practice, establishment of prerequisite technological infrastructure will be needed to
implement such models for real-world decision support.
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Introduction

Among individuals with type 2 diabetes (T2D) and body mass
index (BMI) of $35 kg/m2, laparoscopic metabolic surgery
(including Roux-en-Y gastric bypass and sleeve gastrectomy, also
commonly referred to as “bariatric surgery”) is recognized by the
American Diabetes Association as one of the most effective means
to achieve substantial, sustained weight loss, improved glycemic
control, and in many cases remission of T2D.1

Nevertheless, not all patients with T2D who undergo metabolic
surgery experience remission. This uncertainty of response to
surgery, combined with a wide variety of other factors, including
nonuniform health insurance coverage and access, high out-of-
pocket costs, self-perception, and patient fear of undergoing
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surgery or complications, have all contributed to a low uptake of
metabolic surgery among those who are surgically eligible
(w1%).2–7

Patient-level prediction (PLP) models provide a means by
which an individual can be assigned a predicted probability of
experiencing a particular outcome (beneficial or harmful) based
on a set of predictors such as their demographics, comorbidities,
or other factors. These models may be used in clinical and eco-
nomic decision support to target treatments to individuals for
whom there is the high probability of benefit, or away from in-
dividuals for whom there is a high probability of harm.

In the context of metabolic surgery in individuals with T2D, a
variety of PLP tools have been developed for the outcome of T2D
remission—most of which are operationalized as discrete integer
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scores, few of which have been externally validated in cohorts
other than those in which they were developed, and most of
which have been evaluated within relatively small samples (N
ranging from 31 to 900).8–15

To our knowledge, however, no previous study has attempted
to harness the vast amount of information contained in “big data”
healthcare databases, such as administrative claims data, to pre-
dict outcomes after metabolic surgery.

Thus, using administrative claims data and an innovative PLP
modeling platform (Patient Level Prediction software, an open-
source R package16) developed by the Observational Health Data
Sciences and Informatics (OHDSI) network, we sought to examine
whether we could yield a useful PLP model for predicting com-
plete antihyperglycemic medication cessation (as a proxy for A1c
control) after metabolic surgery in patients with T2D and anti-
hyperglycemic medication treatment.
Methods

OHDSI Network and PLP Framework

OHDSI is an open science collaborative with an international
network of researchers and data partners who focus on method-
ological research, open-source analytics development, and clinical
applications to advance the generation and dissemination of
reliable medical evidence from observational data.17 We followed
the OHDSI PLP framework to develop and validate our PLP model
conforming to community-defined best practices.18

The OHDSI PLP framework has several key innovations and
strengths. First, the OHDSI PLP framework and software are
applied to the Observational Medical Outcomes Partnership
(OMOP) Common Data Model (CDM). The OMOP CDM is an open
community standard for organizing the content of observational
datasets into a homogenous data structure.19 Use of the OMOP
CDM within the framework enables a PLP study to be developed
and executed in one database and then consistently executed
across different healthcare databases stored in the OMOP CDM for
external validation or clinical application purposes. Second, the
PLP framework also uses the OHDSI Standard Vocabulary20—a set
of standard clinical taxonomies for diagnosis codes, medications,
observations, and so on (eg, SNOMED, LOINC, RxNorm)—to auto-
matically generate a very high-dimensional feature set of candi-
date predictors (often numbering in the tens of thousands of
predictors) for use in a PLP model. The feature set is based on the
collection of observed diagnoses, medications, observations, and
so on, that are present for the cohort in which the PLP model is
being trained. A priori defined predictors may also be created and
used in the PLP model; however, the automatic generation of a
feature set is both very efficient from a programming perspective
and allows for predictors with previously unknown predictive
associations to contribute to the PLP model. Finally, the PLP
framework and software generate a complete set of code, which is
portable from researcher to researcher, to facilitate efficient
replication of the PLP model and minimization of reproducibility
errors.

Overview of Predictive Modeling Approach

We undertook the following steps to develop and validate our
PLP model.18 First, we first defined our target population in whom
we wish to predict the outcome (patients undergoing metabolic
surgery who had a baseline diagnosis of T2D and anti-
hyperglycemic medication treatment); second, we defined our
outcome (complete cessation of antihyperglycemic medication
from 365 to 730 days after metabolic surgery); third, we selected a
database in which we could obtain data on a large sample of the
target population (Truven MarketScan Commercial Claims and
Encounters [CCAE] Database); fourth, among the target population
extracted from the database, we subdivided the sample into a
training set (comprising 75% of the sample) in which we initially
developed the PLP model and a separate test set (comprising the
remaining 25% of the sample) in which we assessed the internal
performance (discrimination/calibration) of the model; fifth, we
selected a separate database in which we could obtain data on
another large sample of the target population (Optum Clinfor-
matics Database [Optum]) and applied the trained PLP model to
assess the external validity of the model.

Sources of Data

We trained the model in the CCAE database and externally
validated the model in the Optum database. The CCAE database
comprises health insurance claims and encounter records for
commercially insured employees and dependents in the United
States and is the largest database for privately insured patients
with longitudinal follow-up in all 50 states. The Optum database
comprises health insurance claims data for a combination of US
private insurance and Medicare Advantage beneficiaries. Both
databases contain de-identified data derived from health plan
members’ enrollment data and facility, physician, and pharmacy
claims. The CCAE and Optum databases include approximately 23
million and 13 million covered lives annually, respectively.

Target Population

The target population comprised patients meeting all
following criteria: underwent laparoscopic metabolic surgery
(either Roux-en-Y gastric bypass or sleeve gastrectomy) between
January 1, 2007, to October 1, 2013 (first observed surgery during
this period = index); aged $18 years at index; continuous obser-
vation (ie, insurance enrollment) of 180 days before (baseline) to
730 days after index; $1 baseline condition occurrence of T2D;
and $1 baseline prescription fill for antihyperglycemic medica-
tion. Above, these criteria are defined in terms of the OMOP CDM
nomenclature, but what underlies these criteria are sets of codes
lists which are native to given databases and data sources (eg,
International Classification of Diseases [ICD] and Current Proce-
dural Terminology procedure codes, ICD diagnosis codes, and
National Drug Codes), which have been mapped to the taxonomies
of the Standard Vocabulary (eg, SNOMED and RxNorm) and can
therefore translate across databases with disparate underlying
native code systems.

Outcome and Validation of Outcome

We defined the outcome as no prescription fills for any anti-
hyperglycemic medication from 365 to 730 days after metabolic
surgery. This included both oral and injectable antihyperglycemic
medications. We used this outcome as a proxy for A1c control,
chosen owing to a lack of datasets that contain information on A1c
(to measure A1c control/remission more precisely), have records
for enough patients undergoing metabolic surgery to adequately
train and externally validate a predictive model, or have
comprehensive longitudinal data on enrollment and prescription
medication use (as in the case with many electronic health record
[EHR] databases). We conducted a small, ancillary outcome vali-
dation study to assess whether cessation of antihyperglycemic
medication following metabolic surgery is an acceptable proxy for
A1c control without continued use of antihyperglycemic medica-
tion (see Appendix 1 for methods and results in Supplemental
Materials found at https://doi.org/10.1016/j.jval.2019.01.011).
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Table 1. Baseline characteristics of target populations

CCAE (N = 13050) Optum (N = 3477)

Age, mean and standard deviation 49.3 8.7 51.5 10.0

Female, n and % 9035 69.2% 2375 68.3%

5 most common baseline antihyperglycemic medications, n and %
Metformin/biguanides 10163 77.9% 2.635 75.8%
Sulfonylureas 4592 35.2% 1234 35.7%
Insulins and analogues 3977 30.5% 904 26.0%
Thiazolidinediones 3551 27.2% 874 25.1%
Dipeptidyl peptidase 4 (DPP-4) inhibitors 1745 13.4% 404 11.6%

5 most common baseline comorbid conditions, n and %
Hypertensive disorder 9472 72.6% 3143 90.3%
Inflammation of specific body systems 7763 59.5% 2396 68.9%
Pain 7218 55.3% 2426 69.8%
Finding related to sleep 6676 51.2% 2244 64.5%
Hyperlipidemia 6673 51.1% 2792 80.3%

Roux-en-Y gastric bypass at index, n and % 10012 76.7% 2473 71.1%

Adjustable gastric banding revision during baseline, n and % 261 2.0% 80 2.3%

CCAE, Truven MarketScan Commercial Claims and Encounters database.
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Predictors

All candidate predictors used the patients’ history recorded in
the 180 days before index (baseline), unless otherwise noted. The
candidate predictors included age group at index, sex, index
month (to account for seasonality), the Diabetes Complications
Severity Index,21 SNOMED condition occurrences, SNOMED mea-
surements and procedures, drug exposures mapped to ingredient
level, and metabolic surgery-specific factors (Roux-en-Y gastric
bypass vs sleeve gastrectomy at index; prior primary adjustable
gastric banding, prior adjustable gastric banding revision).

Statistical Analysis Methods

We trained a lasso logistic regression model, a type of ma-
chine learning, within the CCAE database using one repetition of
10-fold cross-validation. Cross-validation is a resampling pro-
cedure used to select the optimal hyperparameter value while
minimizing the optimistic area under the receiver operating
characteristic curve (AUC) that would occur with overfitting. In
10-fold cross-validation, each lasso logistic regression with a
specific variance (hyperparameter) has its performance esti-
mated by splitting a training dataset into 10 sets, holding out 1 of
these sets while training the model on the other 9 sets, and then
evaluating the model on the holdout set. This process is itera-
tively repeated in each set to give an estimated cross-validation
performance of the lasso logistic regression with the specific
variance. The training dataset comprised a randomly selected
75% subset of the total dataset, with the remaining 25% held out
to enable an internal validation of the model. We assessed model
discrimination using the AUC and model calibration by inspect-
ing a calibration plot. We externally validated the trained model
by applying it in the Optum database and evaluating its model
discrimination therein. The PatientLevelPrediction R package
version 2.0.0 was used for model training, internal validation,
and external validation.16

Sensitivity Analyses

As benchmarks for the internal validation, we also fit predic-
tive models using Gradient Boosting Machine, Random Forest, and
AdaBoost techniques, performing a grid search to select the
optimal hyperparameters for each. We compared the resultant
test AUCs for these models to that of the primary lasso logistic
regression approach.
Results

Target Population

The study included 13050 and 3477 patients from the CCAE
and Optum databases, respectively. Among patients from the
CCAE database, 9523 (72.9%) attained complete antihyperglycemic
medication cessation between 1 and 2 years after metabolic sur-
gery; in Optum, these numbers were 2461 (70.8%). Table 1 pre-
sents the baseline characteristics of the target population in the
CCAE and Optum datasets.

Final Model Specification and Internal Validation
Performance

From among 22099 candidate predictors in the CCAE dataset,
125 predictors were selected through Lasso regression. The
model’s run time, hardware and processers used, and coefficients
for each predictor are available in Appendix 2 (see Supplemental
Materials found at https://doi.org/10.1016/j.jval.2019.01.011);
however, the coefficients must be interpreted with caution owing
to potential for multicollinearity, which is inherent with machine-
learning based predictive models. The 3 predictors with the
strongest negative association with antihyperglycemic medication
cessation were baseline use of insulins and analogues, prior
adjustable gastric banding revision, and increasing Diabetes Co-
morbidity Severity Index. The 3 predictors with the strongest
positive association with antihyperglycemic medication cessation
were baseline use of noninsulin glucose-lowering drugs, having
undergone Roux-en-Y gastric bypass (vs sleeve gastrectomy), and
younger age.

The internal validation of the model showed that the model
possessed very good internal discriminative accuracy, with an AUC
of 0.778 (0.761-0.795). Figures 1 and 2 present the receiver
operating characteristic (ROC) plot and calibration plot for the
external validation of the model, respectively. Figure 3 presents a
scatterplot of the model’s sensitivity, positive predictive value

https://doi.org/10.1016/j.jval.2019.01.011


Figure 3. Sensitivity, positive predictive value, specificity, and
negative predictive value of the trained model in the 25% CCAE
validation set (N = 3527).

PPV, positive predictive value; NPV, negative predictive value.

Figure 1. Receiver operating characteristic plot for the internal
validation of the model in the 25% CCAE validation set (N = 3527).
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(PPV), specificity, and negative predictive value (NPV) by predicted
probability thresholds. Under the circumstance of using a $50%
predicted probability threshold to select patients for metabolic
surgery, the model possesses 91.5% sensitivity, 79.4% PPV, 61.0%
specificity, and 36.1% NPV.

External Validation Performance

The external validation of the model in Optum showed that the
model possessed good transportability, with an external AUC of
0.759 (0.741-0.777). The ROC plot and calibration plot for the
external validation of the model are presented in Figures 4 and 5,
respectively.
Figure 2. Calibration plot* for the internal validation of the
model in the 25% CCAE validation set (N = 3527). *The sample
was split into 10 deciles, and the mean predicted probability of
the outcome was plotted against the observed probability of the
outcome for each decile. The dotted line represents perfect
model calibration, with the expected risk neither under- nor
overestimated across risk deciles.
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Sensitivity Analyses

Sensitivity analyses of the internal validation step using alter-
native predictive model approaches yielded the following test AUC
values: gradient boosting machine test AUC = 0.744; random for-
est test AUC = 0.788; and AdaBoost test AUC = 0.758. We retained
lasso logistic regression as the primary analysis approach given
that it yielded an internal test AUC of 0.778 and has the benefit of
providing a comparatively more parsimonious and interpretable
result versus the alternative approaches.
Discussion

We used a state-of-the-art R-based platform, applied to
administrative claims data, to develop a PLP model for cessation of
antihyperglycemic medication after laparoscopic metabolic sur-
gery among patients with T2D. Our model performed well, with
internal AUC of 0.778. It also generalized well to another dataset
and population, with external AUC of 0.759.

Previous models predicting diabetes remission after metabolic
surgery (for most of which formal measures of discrimination are
not reported) have reported internal AUCs varying from 0.69 to
0.95 in samples with 46 to 103 patients and external AUCs varying
from 0.71 to 0.86 in samples with 502 to 900 patients.8,10,11 Our
model’s internal and external AUCs fall within the range of the
aforementioned prior models; however, direct comparisons be-
tween our model and the prior models are limited by (1) differ-
ences in the definitions of diabetes remission, and (2) the inability
to directly implement the prior models in administrative claims
data, which lack the required information on BMI, C-peptide,
duration of diabetes, and A1c.

Several considerations arise when contemplating how to
practically implement PLP models for real-world decision support
in general. Surely, many different stakeholders would benefit from



Figure 5. Calibration* plot for the external validation of the
model in Optum (N = 3477). *The sample was split into 10 deciles,
and the mean predicted probability of the outcome was plotted
against the observed probability of the outcome for each decile.
The dotted line represents perfect model calibration, with the
expected risk neither under- nor overestimated across risk
deciles.
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Figure 4. Receiver operating curve plot for the external
validation of the model in Optum (N = 3477).
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the information a PLP model provides: patients wishing to know
whether they can expect a desirable outcome if they undergo
what they might perceive as an invasive surgical procedure; a
physician who wishes to appropriately set expectations for their
patients or who wishes to target metabolic surgery to only those
in whom they feel confident it will meet treatment goals; a payer
that may not provide universal coverage of elective metabolic
surgery but wishes to maximize the expected benefits of the
surgery when it is approved.

A first logical question is: Who would implement this model
from a technical standpoint, and what are the prerequisite cir-
cumstances to do so? With the present form of our model, a
prerequisite data requirement is access to a 6-month history of
administrative claims data for the individual for whom the pre-
diction will be made. Today, such data are most likely to lie in the
hands of a payer. Healthcare providers who are members of in-
tegrated delivery networks may also be able to gain access to the
needed history of their patients’ administrative claims data;
however, it is far more likely in the current and near term that
healthcare providers will have access primarily to a patient’s EHR.
In the limitations section below, we discuss the subject of applying
our PLP model in EHR data.

A second-order matter related to the prerequisite data is the
timeliness of data. In our analysis, we used administrative claims
data with service dates leading up until the day before the surgery
was conducted. In practice, presurgical predictions to inform the
decision of whether to undergo a surgery would likely be made
weeks or even months ahead of the decision to plan a surgery.
Furthermore, administrative claims data, unlike EHR data, typi-
cally have a lag associated with the adjudication of the claims,
sometimes extending several months for inpatient claims. Thus,
any prediction made based on administrative claims data would
likely reflect the patient’s status as of the recent past as opposed
to the day on which the prediction was made. We investigated
how this phenomenon might affect our predictive model in a
post-hoc sensitivity analysis. In this post-hoc analysis, we trained
the model using predictors measured over 365 days until 180 days
before metabolic surgery. Use of less recent data did result in
slight numeric decrement in the model AUC, from 0.778 to 0.755
for the internal validation analysis, and from 0.759 to 0.745 in the
external validation analysis. The small decreases in the C-statistic
indicate that it would be feasible to build a predictive model for
antihyperglycemic medication cessation based on older claims
data that would be available before the planned surgery date.

Regardless of who implements the prediction on what data,
another important prerequisite to making the prediction is the
technological capability. To easily translate the PLP model from
one dataset to another, the datasets need to share a common data
model (in our case, the OMOP CDM) and must have an interface
into which they can “plug” a patient’s data to compute the pre-
diction. With respect to the former requirement, several CDMs
exist, including the OMOP CDM, the PCORnet CDM, and the
Sentinel CMD, among others; however, portability of PLP models
across CDMs may not be possible.22,23 Without cross-CDM trans-
lation, the implementation of PLP models may be fragmented by
variation in CDM adoption. The latter requirement is relatively
trivial given the simple computation required to generate a pre-
diction once the underlying data are coupled with the PLP model.
Thus, it is incumbent on us as a community of researchers to
continue to develop and facilitate such tools which would enable
the practical application of PLP models.

Envisioning the future when someone will implement this
model in practice, what will they do with the prediction? If a
patient has a 75% predicted probability of antihyperglycemic
medication cessation, what does this mean to the patient, her
healthcare provider, or her payer? What is the predicted proba-
bility threshold below which the patient would not undergo, be
recommended for, or be approved for the metabolic surgery
versus above which they would? From the patient perspective,
preference studies and benefit-risk analysis may be useful to
answer this question. From the economic perspective, a concept
referred to as “target efficiency,”which combines PLP models with
economic cost-benefit analysis, may be used to compute the
specific prediction threshold at which targeting the intervention
only to individuals who meet the threshold will yield the
maximum expected economic net benefit (ENB).24,25 Such an
approach would likely be most useful to a payer that wishes to
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target scarce resources in a way that maximizes economic
efficiency.

Finally, PLP models may serve to generate hypotheses
regarding ways to adapt current clinical practice to optimize
outcomes. For example, given that insulin use was strongly asso-
ciated with not achieving antihyperglycemic medication cessa-
tion, this suggests that earlier intervention with metabolic surgery
in the disease process for diabetes (before insulin use) may result
in significantly higher diabetes remission rates.

Limitations

This study was subject to additional limitations that deserve
consideration. First, although there are methods that can predict
multiple outcomes simultaneously, PLP models tend to focus on a
single aspect (risk/probability of a binary outcome). The same is
true for the present PLP model, which focuses on anti-
hyperglycemic medication cessation but does not consider surgical
risks nor does it consider prognosis in the absence of surgery. As
described above, the expected net benefit of an intervention stems
not only from the potential benefits of the intervention but also
from the costs to implement it and its potential iatrogenic impact.
Thus, this model alone could not function as an adequate decision
support tool to decide whether to undergo metabolic surgery.
Ideally, information from multiple PLP models—on both benefits
and risks—could be used to inform patient care in the future.

Second, we based our example on 2 very large real-world
administrative claims databases, chosen primarily on the basis
that they would provide large samples in which the PLP model
could trained, internally validated, and externally validated.
Administrative claims databases lack complete information on a
variety of predictors that could potentially be very important to
antihyperglycemic medication cessation or diabetes remission,
including baseline BMI and A1c. A critical aim for future research
would be to implement this model using EHR data, in which a
more objective measure of diabetes remission may also be
possible. Future studies comparing the relative predictive power
of administrative claims data (which may contain a larger breadth
of information across the continuum of care) versus that of EHRs
(which may sometimes provide narrower insights due to their
reflection of a single practice but may also provide richer clinical
detail such as baseline A1c) would be very informative for future
decisions regarding implementation. Furthermore, it may be
possible in the future to train a model using an integrated dataset
that includes both administrative claims data and EHR data linked
together for the same patient, or which links in other information
such as patient reported lifestyle data. Indeed, continual incre-
mental improvement of PLP models will be possible in the future
and will be key to advancing a learning healthcare system.

Third, because the outcome of interest was antihyperglycemic
medication cessation between 1 and 2 years after surgery, only
patients who underwent metabolic surgery and for whom at least
2 years of follow-up data were available could be used in the
present model. The 13050 (CCAE) and 3477 (Optum) patients
meeting the study criteria came from samples of 23480 and 6028
metabolic surgery patients with any duration of follow-up data
available; thus, the attrition rate over the 2-year period was
approximately 42 % to 44%. It is possible that the patients used for
training the model may differ from the overall group of patients
considering metabolic surgery, which limits generalizability.

Finally, the use of machine learning techniques to develop
predictive models typically involves a tradeoff: greater predictive
power is gained at the cost of interpretability and parsimony. Our
PLP model selected from among over 22000 candidate predictors,
many of which represent overlapping concepts and many of which
may be highly multicollinear with other predictors that may or
may not have made it into the ultimate PLP model specification.
Thus, the individual interpretation of a single underlying predictor
may sometimes appear unintuitive and should not be taken as
being representative of an effect estimate for that predictor.
Although many of the predictors in our final model do make
clinical sense (eg, indicators for insulin use and increasing values
of the Diabetes Comorbidity Severity Index were associated with
lower probability of antihyperglycemic medication cessation)
some carried associations that may not be easily explained (eg,
inflammatory disorder of head was associated with higher prob-
ability of antihyperglycemic medication cessation). This aspect of
the underlying PLP model may be unpalatable to those seeking a
parsimonious score by which to stratify patients, such as the
DiaRem or ABCD scores. Nevertheless, in the context of predictor
selection from many thousands of candidate predictors, if those
that are chosen by a data-driven means (and their corresponding
coefficients) yield an accurate prediction in model training, in-
ternal validation, and external validation, their predictive utility
may be more important than their alignment with clinical
intuition.

Our research adds several unique contributions to the litera-
ture. First, to our knowledge, no prior study has reported the
development and validation of an administrative claims data-
based predictive model in the context of metabolic surgery.
These data are a mainstay of outcomes research, and although
they lack certain clinical elements such as BMI, duration of dia-
betes, and A1c, which would be ideal for the prediction problem at
hand, we have demonstrated their potential utility in this appli-
cation. Moreover, we accomplished this application using machine
learning techniques applied to a very large feature set of over
22000 potential predictors, as opposed to a traditional approach
of using a priori model specification. This also represents one of
the first published reports of a clinical prediction application of
the OHDSI network’s PLP framework. As noted above, the frame-
work’s underlying use of the OMOP CDM, the OHDSI Standard
Vocabulary, and a network data infrastructure enabled us to effi-
ciently conduct an external validation of the model within a
separate database (Optum) from the one in which the model was
trained (CCAE). Indeed, the present analysis’ code is available to
any member of the OHDSI network who wishes to replicate or
expand upon our research (note: anyone may become a member
of the OHDSI network [https://www.ohdsi.org/join-the-journey/]).
Conclusions

We developed a well-performing PLP model to predict anti-
hyperglycemic medication cessation after metabolic surgery. PLP
models based on readily available real-world healthcare data hold
promise for healthcare decision support and may serve to
generate hypotheses regarding ways to adapt current clinical
practice to optimize outcomes. Barriers currently exist to the
practical implementation of PLP models as clinical decision sup-
port tools. Nevertheless, as a community, patients, providers,
payers, and researchers can work together to overcome these
barriers and benefit from the full potential of PLP models based on
large real-world data sources.
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